Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.)

被引:166
作者
Sziderics, A. H. [1 ]
Rasche, F. [1 ]
Trognitz, F. [1 ]
Sessitsch, A. [1 ]
Wilhelm, E. [1 ]
机构
[1] Austrian Res Ctr GmbH, Dept Bioresource, A-2444 Seibersdorf, Austria
关键词
pepper; endophytes; ACC deaminase; IAA; abiotic stress; gene expression;
D O I
10.1139/W07-082
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Endophytes are nonpathogenic plant-associated bacteria that can play an important role in plant vitality and may confer resistance to abiotic or biotic stress. The effects of 5 endophytic bacterial strains isolated from pepper plants showing 1-aminocyclopropane-1-carboxyl ate deaminase activity were studied in sweet pepper under in vitro conditions. Four of the strains tested showed production of indole acetic acid. Plant growth, osmotic potential, free proline content, and gene expression were monitored in leaves and roots under control and mild osmotic stress conditions. All indole acetate producers promoted growth in Capsicum annuum L. 'Ziegenhorn Bello', from which they were isolated. Osmotic stress caused an increase in the content of free proline in the leaves of both inoculated and noninoculated plants. Inoculated control plants also revealed higher proline levels in comparison with noninoculated control plants. Differential gene expression patterns of CaACCO, CaLTPI, CaSAR82A, and putative P5CR and P5CS genes during moderate stress were observed, depending on the bacterium applied. Inoculation with 2 bacterial strains, EZB4 and EZB8 (Arthrobacter sp. and Bacillus sp., respectively), resulted in a significantly reduced upregulation or even downregulation of the stress-inducible genes CaACCO and CaLTPI, as compared with the gene expression in noninoculated plants. This indicates that both strains reduced abiotic stress in pepper under the conditions tested.
引用
收藏
页码:1195 / 1202
页数:8
相关论文
共 52 条
[1]  
Abeles FB., 1992, ETHYLENE PLANT BIOL
[2]   Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN [J].
Barka, Essaid Ait ;
Nowak, Jerzy ;
Clement, Christophe .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (11) :7246-7252
[3]   RAPID DETERMINATION OF FREE PROLINE FOR WATER-STRESS STUDIES [J].
BATES, LS ;
WALDREN, RP ;
TEARE, ID .
PLANT AND SOIL, 1973, 39 (01) :205-207
[4]   Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHA0 affects root growth of cucumber, but does not improve protection of the plant against Pythium root rot [J].
Beyeler, M ;
Keel, C ;
Michaux, P ;
Haas, D .
FEMS MICROBIOLOGY ECOLOGY, 1999, 28 (03) :225-233
[5]   Ethylene: A gaseous signal molecule in plants [J].
Bleecker, AB ;
Kende, H .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2000, 16 :1-+
[6]   AMMONIA ASSIMILATION BY RHIZOBIUM CULTURES AND BACTEROIDS [J].
BROWN, CM ;
DILWORTH, MJ .
JOURNAL OF GENERAL MICROBIOLOGY, 1975, 86 (JAN) :39-48
[7]   Validating internal controls for quantitative plant gene expression studies [J].
Brunner A.M. ;
Yakovlev I.A. ;
Strauss S.H. .
BMC Plant Biology, 4 (1)
[8]  
Burd GI, 1998, APPL ENVIRON MICROB, V64, P3663
[9]  
Campbell BG, 1996, FEMS MICROBIOL LETT, V138, P207, DOI 10.1016/0378-1097(96)00108-5
[10]   Transcriptome analysis of Arabidopsis colonized by a plant-growth promoting rhizobacterium reveals a general effect on disease resistance [J].
Cartieaux, F ;
Thibaud, MC ;
Zimmerli, L ;
Lessard, P ;
Sarrobert, C ;
David, P ;
Gerbaud, A ;
Robaglia, C ;
Somerville, S ;
Nussaume, L .
PLANT JOURNAL, 2003, 36 (02) :177-188