Unsupervised Feature Extraction Inspired by Latent Low-Rank Representation

被引:8
|
作者
Wang, Yaming [1 ]
Morariu, Vlad I. [1 ]
Davis, Larry S. [1 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
关键词
D O I
10.1109/WACV.2015.78
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Latent Low-Rank Representation (LatLRR) has the empirical capability of identifying "salient" features. However, the reason behind this feature extraction effect is still not understood. Its optimization leads to non-unique solutions and has high computational complexity, limiting its potential in practice. We show that LatLRR learns a transformation matrix which suppresses the most significant principal components corresponding to the largest singular values while preserving the details captured by the components with relatively smaller singular values. Based on this, we propose a novel feature extraction method which directly designs the transformation matrix and has similar behavior to LatLRR. Our method has a simple analytical solution and can achieve better performance with little computational cost. The effectiveness and efficiency of our method are validated on two face recognition datasets.
引用
收藏
页码:542 / 549
页数:8
相关论文
共 50 条
  • [31] Robust Image Representation and Decomposition by Laplacian Regularized Latent Low-Rank Representation
    Zhang, Zhao
    Yan, Shuicheng
    Zhao, Mingbo
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [32] Similarity-Adaptive Latent Low-Rank Representation for Robust Data Representation
    Wang, Lei
    Zhang, Zhao
    Li, Sheng
    Liu, Guangcan
    Hou, Chenping
    Qin, Jie
    PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2018, 11012 : 71 - 84
  • [33] A Sparse Projection and Low-Rank Recovery Framework for Handwriting Representation and Salient Stroke Feature Extraction
    Zhang, Zhao
    Liu, Cheng-Lin
    Zhao, Ming-Bo
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2015, 6 (01)
  • [34] Low-rank matrix regression for image feature extraction and feature selection
    Yuan, Haoliang
    Li, Junyu
    Lai, Loi Lei
    Tang, Yuan Yan
    INFORMATION SCIENCES, 2020, 522 : 214 - 226
  • [35] Low-Rank Subspace Representation for Supervised and Unsupervised Classification of Hyperspectral Imagery
    Sumarsono, Alex
    Du, Qian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (09) : 4188 - 4195
  • [36] Robust Adaptive Low-Rank and Sparse Embedding for Feature Representation
    Wang, Lei
    Zhang, Zhao
    Liu, Guangcan
    Ye, Qiaolin
    Qin, Jie
    Wang, Meng
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 800 - 805
  • [37] Unsupervised feature selection via low-rank approximation and structure learning
    Wang, Shiping
    Wang, Han
    KNOWLEDGE-BASED SYSTEMS, 2017, 124 : 70 - 79
  • [38] Unsupervised feature selection with graph learning via low-rank constraint
    Guangquan Lu
    Bo Li
    Weiwei Yang
    Jian Yin
    Multimedia Tools and Applications, 2018, 77 : 29531 - 29549
  • [39] Unsupervised feature selection with graph learning via low-rank constraint
    Lu, Guangquan
    Li, Bo
    Yang, Weiwei
    Yin, Jian
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (22) : 29531 - 29549
  • [40] Graph regularized low-rank tensor representation for feature selection
    Su, Yuting
    Bai, Xu
    Li, Wu
    Jing, Peiguang
    Zhang, Jing
    Liu, Jing
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 56 : 234 - 244