Ground states for a class of deterministic spin models with glassy behaviour

被引:6
作者
Borsari, I
Graffi, S
Unguendoli, F
机构
[1] Dipartimento di Matematica, Università di Bologna
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 08期
关键词
D O I
10.1088/0305-4470/29/8/008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the deterministic model with glassy behaviour, recently introduced by Marinari, Parisi and Ritort, with Hamiltonian H = Sigma(i,j=1)(N) J(i,j)sigma(i) sigma(j), where J is the discrete sine Fourier transform. The ground state found by these authors for N odd and 2N+1 prime is shown to become asymptotically degenerate when 2N + 1 is a product of odd primes, and to disappear for N even. This last result is based on the explicit construction of a set of eigenvectors for J, obtained through its formal identity with the imaginary part of the propagator of the quantized unit symplectic matrix over the 2-torus.
引用
收藏
页码:1593 / 1604
页数:12
相关论文
共 12 条
  • [1] [Anonymous], 1972, INTRO THEORY NUMBERS
  • [2] Apostol T., 1998, Introduction to Analytic Number Theory
  • [3] SELF-INDUCED QUENCHED DISORDER - A MODEL FOR THE GLASS-TRANSITION
    BOUCHAUD, JP
    MEZARD, M
    [J]. JOURNAL DE PHYSIQUE I, 1994, 4 (08): : 1109 - 1114
  • [4] CLASSICAL LIMIT OF THE QUANTIZED HYPERBOLIC TORAL AUTOMORPHISMS
    ESPOSTI, MD
    GRAFFI, S
    ISOLA, S
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 167 (03) : 471 - 507
  • [5] ESPOSTI MD, 1995, IN PRESS COMMUN MATH
  • [6] ESPOSTI MD, 1993, ANN I H POINCARE, V58, P7647
  • [7] REPLICA FIELD-THEORY FOR DETERMINISTIC MODELS .2. A NONRANDOM SPIN-GLASS WITH GLASSY BEHAVIOR
    MARINARI, E
    PARISI, G
    RITORT, F
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (23): : 7647 - 7668
  • [8] REPLICA FIELD-THEORY FOR DETERMINISTIC MODELS .1. BINARY SEQUENCES WITH LOW AUTOCORRELATION
    MARINARI, E
    PARISI, G
    RITORT, F
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (23): : 7615 - 7645
  • [9] MEZARD M, 1995, SPIN GLASS THEORY
  • [10] NARKIEWICZ W, 1995, CLASSICAL PROBLEMS N