Network traffic anomalies, natural language processing, and random matrix theory

被引:0
作者
Safier, Pedro N. [1 ]
Moskowitz, Ira S. [2 ]
机构
[1] S&J Solut LLC, 107 S West St PMB 509, Alexandria, VA 22314 USA
[2] Naval Res Lab, Washington, DC 20375 USA
来源
COMPLEX ADAPTIVE SYSTEMS | 2014年 / 36卷
关键词
Computer Networks; Traffic Anomaly Detection; Random Matrix Theory; Natural Language Processing;
D O I
10.1016/j.procs.2014.09.012
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Random Matrix Theory (RAIT) is an important tool for detecting correlations in multidimensional time series, such as stock market price histories, and origin-destination flows in data networks. We review the basic theoly and propose two novel applications: the detection of traffic anomalies in data networks and natural language processing. For traffic anomalies the advantage of this approach is that training sets are not necessary. In the case of natural language processing, our approach is a refinement of the standard Latent Semantic Analysis (LSA). We will demonstrate applications to real traffic from a data network, and present the use in Natural Language Processing. Directions for future work will be discussed. (C) 2014 The Authors. Published by Elsevier B.V.
引用
收藏
页码:401 / +
页数:2
相关论文
共 14 条
[1]  
[Anonymous], 1994, STABLE NONGAUSSIAN R
[2]   THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA [J].
ANSCOMBE, FJ .
BIOMETRIKA, 1948, 35 (3-4) :246-254
[3]   Large scale cross-correlations in Internet traffic -: art. no. 056110 [J].
Barthélemy, M ;
Gondran, B ;
Guichard, E .
PHYSICAL REVIEW E, 2002, 66 (05) :7
[4]   Network Anomaly Detection: Methods, Systems and Tools [J].
Bhuyan, Monowar H. ;
Bhattacharyya, D. K. ;
Kalita, J. K. .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2014, 16 (01) :303-336
[5]  
DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO
[6]  
2-9
[7]  
Dumais ST, 2004, ANNU REV INFORM SCI, V38, P189
[8]   Mining anomalies using traffic feature distributions [J].
Lakhina, A ;
Crovella, M ;
Diot, C .
ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2005, 35 (04) :217-228
[9]  
Mchta M L, 2004, RANDOM MATRICES
[10]   Random matrix approach to cross correlations in financial data [J].
Plerou, V ;
Gopikrishnan, P ;
Rosenow, B ;
Amaral, LAN ;
Guhr, T ;
Stanley, HE .
PHYSICAL REVIEW E, 2002, 65 (06) :1-066126