The Conringia planisiliqua Alfin-like2 gene enhances drought and salt tolerance in Arabidopsis thaliana

被引:6
|
作者
Zhu, Yanfei [1 ]
Chen, Quanjia [1 ]
Liu, Xiaodong [1 ]
Qu, Yanying [1 ]
机构
[1] Xinjiang Agr Univ, Coll Agron, Urumqi 830052, Peoples R China
关键词
Alfin-like (AL) family; Transgenic plant; Salt tolerance; Drought resistance; FINGER PROTEIN; TRANSCRIPTION FACTOR; EXPRESSION; OVEREXPRESSION; ALFALFA; ALFIN1; GROWTH;
D O I
10.1007/s40626-021-00223-z
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Alfin-like (AL) gene plays a role in regulation of plant abiotic stress. Here we aimed to find a AL gene from the drought and salt stress tolerant plant Conringia planisiliqua. The approximately 187 bp long core fragments and the RACE method were used to obtain a full-length cDNA of approximately 1120 bp with an open reading frame of 735 bp. This cDNA encodes a protein composed of 245 amino acids with a calculated molecular mass of 27.691 kD. Real-time quantitative PCR analysis showed that expression of CpAL2 was induced strongly under 20% PEG6000 drought and 200 mM (NaCl) salt stress. Three independent overexpression lines were obtained and used for functional analysis. The survival rate of CpAL2-overexpressing A. thaliana plant was 2.5 times of wild-type A. thaliana under the soil drought stress. Under drought stress 1/2MS (- 0.5 MPa) plate, the overexpression lines grown on PEG plate exhibit a significantly greater root length compared with the control plants. The survival rate of CpAL2-overexpressing A. thaliana plant was approximately 1.4 times of wild-type A. thaliana under 200 mM center dot NaCl salt stress. Under 150 mM salt stress 1/2MS plate, the root growth of CpAL2-overexpressing A. thaliana plant was increased by 1.75-2.12 folds of wild-type A. thaliana. Overexpression of CpAL2 gene significantly enhanced salt tolerance and drought resistance in transgenic Arabidopsis. Our data indicated that CpAL2 plays an important role in the regulation of stress-responses, and is useful in Arabidopsis with improving tolerance to salt and drought stresses.
引用
收藏
页码:427 / 441
页数:15
相关论文
共 50 条
  • [41] Overexpression of the Jojoba Aquaporin Gene, ScPIP1, Enhances Drought and Salt Tolerance in Transgenic Arabidopsis
    Wang, Xing
    Gao, Fei
    Bing, Jie
    Sun, Weimin
    Feng, Xiuxiu
    Ma, Xiaofeng
    Zhou, Yijun
    Zhang, Genfa
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (01):
  • [42] Overexpression of cotton GhNAC072 gene enhances drought and salt stress tolerance in transgenic Arabidopsis
    Mehari, Teame Gereziher
    Hou, Yuqing
    Xu, Yanchao
    Umer, Muhammad Jawad
    Shiraku, Margaret Linyerera
    Wang, Yuhong
    Wang, Heng
    Peng, Renhai
    Wei, Yangyang
    Cai, Xiaoyan
    Zhou, Zhongli
    Liu, Fang
    BMC GENOMICS, 2022, 23 (01)
  • [43] Overexpression of Cotton a DTX/MATE Gene Enhances Drought, Salt, and Cold Stress Tolerance in Transgenic Arabidopsis
    Lu, Pu
    Magwanga, Richard Odongo
    Kirungu, Joy Nyangasi
    Hu, Yangguang
    Dong, Qi
    Cai, Xiaoyan
    Zhou, Zhongli
    Wang, Xingxing
    Zhang, Zhenmei
    Hou, Yuqing
    Wang, Kunbo
    Liu, Fang
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [44] The constitutive expression of alfalfa MsMYB2L enhances salinity and drought tolerance of Arabidopsis thaliana
    Song, Yuguang
    Lv, Jiao
    Qiu, Nianwei
    Bai, Yunting
    Yang, Ning
    Dong, Wei
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2019, 141 : 300 - 305
  • [45] Over-expression of Arabidopsis ORANGE gene enhances drought stress tolerance through ABA-dependent pathway in Arabidopsis thaliana
    Shan, Yong-Jie
    Li, Dan
    Cao, Jing-Jing
    Zhang, Li
    Han, Li-Quan
    Zhang, Mei-Ping
    Shen, Zhen-Guo
    PLANT GROWTH REGULATION, 2022, 96 (01) : 91 - 101
  • [46] Over-expression of Arabidopsis ORANGE gene enhances drought stress tolerance through ABA-dependent pathway in Arabidopsis thaliana
    Yong-Jie Shan
    Dan Li
    Jing-Jing Cao
    Li Zhang
    Li-Quan Han
    Mei-Ping Zhang
    Zhen-Guo Shen
    Plant Growth Regulation, 2022, 96 : 91 - 101
  • [47] Wheat TaSP gene improves salt tolerance in transgenic Arabidopsis thaliana
    Ma, Xiaoli
    Cui, Weina
    Liang, Wenji
    Huang, Zhanjing
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2015, 97 : 187 - 195
  • [48] The overexpression in Arabidopsis thaliana of a Trichoderma harzianum gene that modulates glucosidase activity, and enhances tolerance to salt and osmotic stresses
    Hermosa, Rosa
    Botella, Leticia
    Keck, Emma
    Angel Jimenez, Jesus
    Montero-Barrientos, Marta
    Arbona, Vicent
    Gomez-Cadenas, Aurelio
    Monte, Enrique
    Nicolas, Carlos
    JOURNAL OF PLANT PHYSIOLOGY, 2011, 168 (11) : 1295 - 1302
  • [49] Expression of Stipa purpurea SpCIPK26 in Arabidopsis thaliana Enhances Salt and Drought Tolerance and Regulates Abscisic Acid Signaling
    Zhou, Yanli
    Sun, Xudong
    Yang, Yunqiang
    Li, Xiong
    Cheng, Ying
    Yang, Yongping
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (06)
  • [50] Increased salt and drought tolerance by D-ononitol production in transgenic Arabidopsis thaliana
    Ahn, Chulhyun
    Park, Uhnmee
    Park, Phun Bum
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2011, 415 (04) : 669 - 674