CAKES: Channel-wise Automatic KErnel Shrinking for Efficient 3D Networks

被引:0
作者
Yu, Qihang [1 ]
Li, Yingwei [1 ]
Mei, Jieru [1 ]
Zhou, Yuyin [1 ]
Yuille, Alan [1 ]
机构
[1] Johns Hopkins Univ, Baltimore, MD 21218 USA
来源
THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE | 2021年 / 35卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D Convolution Neural Networks (CNNs) have been widely applied to 3D scene understanding, such as video analysis and volumetric image recognition. However, 3D networks can easily lead to over-parameterization which incurs expensive computation cost. In this paper, we propose Channel-wise Automatic KErnel Shrinking (CAKES), to enable efficient 3D learning by shrinking standard 3D convolutions into a set of economic operations (e.g., 1D, 2D convolutions). Unlike previous methods, CAKES performs channel-wise kernel shrinkage, which enjoys the following benefits: 1) enabling operations deployed in every layer to be heterogeneous, so that they can extract diverse and complementary information to benefit the learning process; and 2) allowing for an efficient and flexible replacement design, which can be generalized to both spatial-temporal and volumetric data. Further, we propose a new search space based on CAKES, so that the replacement configuration can be determined automatically for simplifying 3D networks. CAKES shows superior performance to other methods with similar model size, and it also achieves comparable performance to state-of-the-art with much fewer parameters and computational costs on tasks including 3D medical imaging segmentation and video action recognition. Codes and models are available at https://github.com/yucornetto/CAKES.
引用
收藏
页码:3225 / 3233
页数:9
相关论文
共 56 条
[1]  
[Anonymous], 2016, LECT NOTES COMP VIII
[2]  
Baker B., 2017, INT C LEARNING REPRE
[3]  
Bender G, 2018, PR MACH LEARN RES, V80
[4]  
Brock Andrew, 2018, INT C LEARN REPR
[5]   Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset [J].
Carreira, Joao ;
Zisserman, Andrew .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :4724-4733
[6]   Progressive Differentiable Architecture Search: Bridging the Depth Gap between Search and Evaluation [J].
Chen, Xin ;
Xie, Lingxi ;
Wu, Jun ;
Tian, Qi .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :1294-1303
[7]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[8]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[9]   Searching for A Robust Neural Architecture in Four GPU Hours [J].
Dong, Xuanyi ;
Yang, Yi .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :1761-1770
[10]   Learning Spatiotemporal Features with 3D Convolutional Networks [J].
Du Tran ;
Bourdev, Lubomir ;
Fergus, Rob ;
Torresani, Lorenzo ;
Paluri, Manohar .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :4489-4497