Oxidation of 1-butanol and a mixture of n-heptane/1-butanol in a motored engine

被引:86
作者
Zhang, Yu [1 ]
Boehman, Andre L. [1 ]
机构
[1] Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA
关键词
1-Butanol; n-Butanol; Oxidation; Motored engine; Combustion; JET-STIRRED REACTOR; N-HEPTANE; BUTANOL; IGNITION; KINETICS; TEMPERATURE; BIOMASS;
D O I
10.1016/j.combustflame.2010.04.017
中图分类号
O414.1 [热力学];
学科分类号
摘要
The oxidation of neat 1-butanol and a mixture of n-heptane and 1-butanol was studied in a modified CFR engine at an equivalence ratio of 0.25 and an intake temperature of 120 degrees C. The engine compression ratio was gradually increased from the lowest point to the point where significant high temperature heat release was observed. Heat release analyses showed that no noticeable low temperature heat release behavior was observed from the oxidation of neat 1-butanol while the n-heptane/1-butanol mixture exhibited pronounced cool flame behavior. Species concentration profiles were obtained via GC-MS and GC-FID/TCD. Quantitative analyses of the reaction products from the oxidation of neat 1-butanol indicate that 1-butanol is consumed mainly through H-atom abstraction. Among the H-atom abstraction reactions, it is observed that the H-atom abstraction from the a-carbon of 1-butanol is particularly favored. The investigation on the oxidation of the mixture of n-heptane/1-butanol showed that the oxidation of 1-butanol is facilitated at low temperatures through the radical pool generated from the oxidation of n-heptane. (C) 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:1816 / 1824
页数:9
相关论文
共 27 条
[1]   Reference components of jet fuels: kinetic modeling and experimental results [J].
Agosta, A ;
Cernansky, NP ;
Miller, DL ;
Faravelli, T ;
Ranzi, E .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2004, 28 (07) :701-708
[2]   Bio-butanol: Combustion properties and detailed chemical kinetic model [J].
Black, G. ;
Curran, H. J. ;
Pichon, S. ;
Simmie, J. M. ;
Zhukov, V. .
COMBUSTION AND FLAME, 2010, 157 (02) :363-373
[3]   A comprehensive modeling study of n-heptane oxidation [J].
Curran, HJ ;
Gaffuri, P ;
Pitz, WJ ;
Westbrook, CK .
COMBUSTION AND FLAME, 1998, 114 (1-2) :149-177
[4]   EXPERIMENTAL-STUDY OF THE OXIDATION OF N-HEPTANE IN A JET-STIRRED REACTOR FROM LOW-TEMPERATURE TO HIGH-TEMPERATURE AND PRESSURES UP TO 40-ATM [J].
DAGAUT, P ;
REUILLON, M ;
CATHONNET, M .
COMBUSTION AND FLAME, 1995, 101 (1-2) :132-140
[5]   A chemical kinetic study of n-butanol oxidation at elevated pressure in a jet stirred reactor [J].
Dagaut, P. ;
Sarathy, S. M. ;
Thomson, M. J. .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2009, 32 :229-237
[6]   Oxidation kinetics of butanol-gasoline surrogate mixtures in a jet-stirred reactor:: Experimental and modeling study [J].
Dagaut, Philippe ;
Togbe, Casimir .
FUEL, 2008, 87 (15-16) :3313-3321
[7]   Experimental and Modeling Study of the Kinetics of Oxidation of Butanol-n-Heptane Mixtures in a Jet-stirred Reactor [J].
Dagaut, Philippe ;
Togbe, Casimir .
ENERGY & FUELS, 2009, 23 (07) :3527-3535
[8]   Bioproduction of butanol from biomass: from genes to bioreactors [J].
Ezeji, Thaddeus Chukwuemeka ;
Qureshi, Nasib ;
Blaschek, Hans Peter .
CURRENT OPINION IN BIOTECHNOLOGY, 2007, 18 (03) :220-227
[9]  
Heywood J.B., 1986, Internal Combustion Engine Fundamentals, Chap. 10: Combustion in Compression Ignition Engines
[10]  
LEPPARD WR, 1989, 892081 SAE