Long Short-Term Memory Forecasting for COVID19 Data

被引:0
作者
Milivojevic, Milan S. [1 ]
Gavrovska, Ana [1 ]
机构
[1] Univ Belgrade, Sch Elect Engn, Bulevar Kralja Aleksandra 73, Belgrade 11120, Serbia
来源
2020 28TH TELECOMMUNICATIONS FORUM (TELFOR) | 2020年
关键词
Severe Acute Respiratory Syndrome Coronavirus 2; forecasting; neural network; long short-term memory;
D O I
10.1109/telfor51502.2020.9306601
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Nowadays everyone is talking about Coronavirus 2 or COVID-19. It is a severe acute respiratory syndrome which produces a lot of concerns around the globe. Since data is available for everyone, as well as for the Republic of Serbia, we used it for experiments via a neural network. Here, a long short-term memory approach is applied in order to make experiments with its parameters, such as the number of layers and the number of hidden units. The results show proper modelling from the standard root mean square error standpoint. The paper contribution is related to testing the parameters in the long short-term memory approach for recent data from the Republic of Serbia.
引用
收藏
页码:276 / 279
页数:4
相关论文
共 17 条
[1]   Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India [J].
Arora, Parul ;
Kumar, Himanshu ;
Panigrahi, Bijaya Ketan .
CHAOS SOLITONS & FRACTALS, 2020, 139
[2]   Demand Forecast in E-commerce Using a Long Short-Term Memory Neural Network Methodology [J].
Bandara, Kasun ;
Shi, Peibei ;
Bergmeir, Christoph ;
Hewamalage, Hansika ;
Quoc Tran ;
Seaman, Brian .
NEURAL INFORMATION PROCESSING (ICONIP 2019), PT III, 2019, 11955 :462-474
[3]   A brief review of socio-economic and environmental impact of Covid-19 [J].
Bashir, Muhammad Farhan ;
Ma, Benjiang ;
Shahzad, Luqman .
AIR QUALITY ATMOSPHERE AND HEALTH, 2020, 13 (12) :1403-1409
[4]   LEARNING LONG-TERM DEPENDENCIES WITH GRADIENT DESCENT IS DIFFICULT [J].
BENGIO, Y ;
SIMARD, P ;
FRASCONI, P .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (02) :157-166
[5]   Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature [J].
Chai, T. ;
Draxler, R. R. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2014, 7 (03) :1247-1250
[6]  
Cho K., 2014, C EMP METH NAT LANG, P1724, DOI [10.3115/v1/d14-1179, DOI 10.3115/V1/D14-1179]
[7]  
Djeddou M., 2020, COVID 19 MODEL
[8]  
Gulli A., DEEP LEARNING KERAS
[9]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[10]  
Hochreiter S., 2001, Gradient flow in recurrent nets: the difficulty of learning long-term dependencies