Graphene Nano Ribbon Field Effect Transistor for High Frequency Applications

被引:0
作者
Happy, H. [1 ]
Meng, N. [1 ]
Fleurier, R. [1 ]
Pichonat, E. [1 ]
Vignaud, D. [1 ]
Dambrine, G. [1 ]
机构
[1] Univ Lille, Inst Elect Microelect & Nanotechnol, UMR CNRS 8520, 1,BP 60069,Ave Poincare, F-59652 Villeneuve Dascq, France
来源
2011 41ST EUROPEAN MICROWAVE CONFERENCE | 2011年
关键词
graphene; ribbon; HF characterization; transistor; millimeter wave FET; EPITAXIAL-GRAPHENE; BANDGAP;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose an overview of our works on graphene field effect transistors (GFETs) on silicon carbide (SiC) substrate. The multilayer graphene was synthesized by thermal decomposition of Si-face silicon carbide (SiC). The GFET was fabricated, based on an array of parallel graphene nano ribbons (GNRs). The impact of the number of graphene layers on device performance was explored. It was found that with the reduction of the layer number from 10 to 5, a significant improvement of DC characteristics and HF performance can be observed. Exploration of HF performance of these devices versus temperature and nanoribbon density are also achieved, showing the strong dependence of temperature on device performance. A high intrinsic current gain cut-off frequency of 60 GHz is reported, and, more importantly for HF applications, the maximum oscillation frequency of 28 GHz is obtained.
引用
收藏
页码:1138 / 1141
页数:4
相关论文
共 16 条
  • [1] Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics
    Berger, C
    Song, ZM
    Li, TB
    Li, XB
    Ogbazghi, AY
    Feng, R
    Dai, ZT
    Marchenkov, AN
    Conrad, EH
    First, PN
    de Heer, WA
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) : 19912 - 19916
  • [2] Ultrahigh electron mobility in suspended graphene
    Bolotin, K. I.
    Sikes, K. J.
    Jiang, Z.
    Klima, M.
    Fudenberg, G.
    Hone, J.
    Kim, P.
    Stormer, H. L.
    [J]. SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) : 351 - 355
  • [3] Atomic scale flattening, step formation and graphitization blocking on 6H-and 4H-SiC{0001} surfaces under Si flux
    Ferrer, F. J.
    Moreau, E.
    Vignaud, D.
    Godey, S.
    Wallart, X.
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2009, 24 (12)
  • [4] Energy band-gap engineering of graphene nanoribbons
    Han, Melinda Y.
    Oezyilmaz, Barbaros
    Zhang, Yuanbo
    Kim, Philip
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (20)
  • [5] 100-GHz Transistors from Wafer-Scale Epitaxial Graphene
    Lin, Y. -M.
    Dimitrakopoulos, C.
    Jenkins, K. A.
    Farmer, D. B.
    Chiu, H. -Y.
    Grill, A.
    Avouris, Ph.
    [J]. SCIENCE, 2010, 327 (5966) : 662 - 662
  • [6] Meric I., 2008, ELECT DEVICES M 2008, P1
  • [7] Current saturation in zero-bandgap, topgated graphene field-effect transistors
    Meric, Inanc
    Han, Melinda Y.
    Young, Andrea F.
    Ozyilmaz, Barbaros
    Kim, Philip
    Shepard, Kenneth L.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (11) : 654 - 659
  • [8] Epitaxial-Graphene RF Field-Effect Transistors on Si-Face 6H-SiC Substrates
    Moon, J. S.
    Curtis, D.
    Hu, M.
    Wong, D.
    McGuire, C.
    Campbell, P. M.
    Jernigan, G.
    Tedesco, J. L.
    VanMil, B.
    Myers-Ward, R.
    Eddy, C., Jr.
    Gaskill, D. K.
    [J]. IEEE ELECTRON DEVICE LETTERS, 2009, 30 (06) : 650 - 652
  • [9] Giant intrinsic carrier mobilities in graphene and its bilayer
    Morozov, S. V.
    Novoselov, K. S.
    Katsnelson, M. I.
    Schedin, F.
    Elias, D. C.
    Jaszczak, J. A.
    Geim, A. K.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (01)
  • [10] 80 GHz field-effect transistors produced using high purity semiconducting single-walled carbon nanotubes
    Nougaret, L.
    Happy, H.
    Dambrine, G.
    Derycke, V.
    Bourgoin, J. -P.
    Green, A. A.
    Hersam, M. C.
    [J]. APPLIED PHYSICS LETTERS, 2009, 94 (24)