Sign changing solutions of semilinear elliptic problems in exterior domains

被引:14
作者
Cerami, Giovanna
Clapp, Monica
机构
[1] Politecn Bari, Dipartimento Matemat, I-70125 Bari, Italy
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
关键词
D O I
10.1007/s00526-007-0092-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of a sign changing solution to the semilinear elliptic problem - Delta u + u =vertical bar u vertical bar(p-2) u, u epsilon H-0(1)(Omega), in an exterior domain Omega having finite symmetries.
引用
收藏
页码:353 / 367
页数:15
相关论文
共 9 条
[1]  
[Anonymous], 1990, REV MAT IBEROAM, DOI DOI 10.4171/RMI/92
[2]   On the existence of a positive solution of semilinear elliptic equations in unbounded domains [J].
Bahri, A ;
Lions, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (03) :365-413
[3]  
BARTSCH T, 2007, IN PRESS MATH ANN
[4]   POSITIVE SOLUTIONS OF SOME NONLINEAR ELLIPTIC PROBLEMS IN EXTERIOR DOMAINS [J].
BENCI, V ;
CERAMI, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1987, 99 (04) :283-300
[5]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[6]   EXISTENCE AND MULTIPLICITY RESULTS FOR SEMILINEAR ELLIPTIC DIRICHLET PROBLEMS IN EXTERIOR DOMAINS [J].
CERAMI, G ;
PASSASEO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (11) :1533-1547
[7]  
CERAMI G, 2006, MILAN J MATH, V74, P1
[8]  
Nirenberg L, 1981, ADV MATH SUPPL STUD, V7, P369
[9]  
Willem M., 1996, Minimax theorems, V24