Isoperimetric inequalities for random walks

被引:2
作者
Telcs, A [1 ]
机构
[1] Cent European Univ, Grad Sch Business, H-1051 Budapest, Hungary
关键词
isoperimetric inequality; random walk; mean exit time; BROWNIAN-MOTION; HEAT KERNEL; GRAPHS; SPECTRA;
D O I
10.1023/A:1024023514214
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper some isoperimetric problems are studied, particularly the extremal property of the mean exit time of the random walk from finite sets. This isoperimetric problem is inserted into the set of equivalent conditions of the diagonal upper estimate of transition probability of random walks on weighted graphs.
引用
收藏
页码:237 / 249
页数:13
相关论文
共 31 条
[1]  
[Anonymous], 1984, CARUS MATH MONOGRAPH
[2]   Manifolds and graphs with slow heat kernel decay [J].
Barlow, M ;
Coulhon, T ;
Grigor'yan, A .
INVENTIONES MATHEMATICAE, 2001, 144 (03) :609-649
[3]  
Barlow M.T., 1998, Lecture notes Math, V1690, P1
[4]   Divergence form operators on fractal-like domains [J].
Barlow, MT ;
Bass, RF .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 175 (01) :214-247
[5]   Transition density estimates for Brownian motion on scale irregular Sierpinski gaskets [J].
Barlow, MT ;
Hambly, BM .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1997, 33 (05) :531-557
[6]  
BARLOW MT, 1989, ANN I H POINCARE-PR, V25, P225
[7]  
BARLOW MT, 1999, S MATH, V39
[8]  
CARRON G, 1994, C SMF SEMINARIES C
[9]  
CHAVEL I, 1998, UNPUB LECT NOTES
[10]   Random walks on graphs with regular volume growth [J].
Coulhon, T ;
Grigoryan, A .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1998, 8 (04) :656-701