On Decay of Entropy Solutions to Nonlinear Degenerate Parabolic Equation with Almost Periodic Initial Data

被引:2
作者
Panov, E. Yu [1 ,2 ]
机构
[1] Yaroslav Wise Novgorod State Univ, Veliky Novgorod 173003, Russia
[2] Peoples Friendship Univ Russia, RUDN Univ, Moscow 117198, Russia
关键词
degenerate nonlinear parabolic equations; conservation laws; entropy solutions; almost periodic functions; spectrum; nonlinearity-diffusivity condition; decay property; CAUCHY-PROBLEM; WELL-POSEDNESS;
D O I
10.1134/S1995080221050127
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Cauchy problem for nonlinear degenerate parabolic equations with almost periodic initial data. Existence and uniqueness (in the Besicovitch space) of entropy solutions are established. It is demonstrated that the entropy solution remains to be spatially almost periodic and that its spectrum (more precisely, the additive group generated by the spectrum) does not increase in the time variable. Under a precise nonlinearity-diffusivity condition on the input data we establish the long time decay property in the Besicovitch norm. For the proof we use reduction to the periodic case and ergodic methods.
引用
收藏
页码:974 / 988
页数:15
相关论文
共 17 条
  • [1] BESICOVITCH AS, 1932, ALMOST PERIODIC FUNC
  • [2] Entropy solutions for nonlinear degenerate problems
    Carrillo, J
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 147 (04) : 269 - 361
  • [3] Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations
    Chen, GQ
    Perthame, B
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (04): : 645 - 668
  • [4] LARGE-TIME BEHAVIOR OF PERIODIC ENTROPY SOLUTIONS TO ANISOTROPIC DEGENERATE PARABOLIC-HYPERBOLIC EQUATIONS
    Chen, Gui-Qiang
    Perthame, Benoit
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (09) : 3003 - 3011
  • [5] Danford N., 1958, LINEAR OPERATORS GEN
  • [6] Asymptotic decay of Besicovitch almost periodic entropy solutions to anisotropic degenerate parabolic-hyperbolic equations
    Frid, Hermano
    Li, Yachun
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (09) : 4998 - 5034
  • [7] Kruzhkov S.N., 1970, Math. USSR-Sbornik, V81, P228, DOI [DOI 10.1070/SM1970V010N02ABEH002156, 10.1070/SM1970v010n02ABEH002156]
  • [8] Kruzhkov S.N., 1994, ANN UNIV FERRARA SEZ, V40, P31
  • [9] Kruzhkov SN., 1991, SOVIET MATH DOKL, V42, P316
  • [10] Lang S., 2002, Algebra, DOI [10.1007/978-1-4613-0041-0, DOI 10.1007/978-1-4613-0041-0]