Missing data imputation and corrected statistics for large-scale behavioral databases

被引:20
|
作者
Courrieu, Pierre [1 ]
Rey, Arnaud [1 ]
机构
[1] Univ Aix Marseille 1, Lab Psychol Cognit, CNRS, UMR 6146,Ctr St Charles, F-13331 Marseille 3, France
基金
欧洲研究理事会;
关键词
Missing data imputation; Statistics corrected for missing data; Item performance behavioral databases; Model goodness of fit; VISUAL WORD RECOGNITION; LEXICON PROJECT;
D O I
10.3758/s13428-011-0071-2
中图分类号
B841 [心理学研究方法];
学科分类号
040201 ;
摘要
This article presents a new methodology for solving problems resulting from missing data in large-scale item performance behavioral databases. Useful statistics corrected for missing data are described, and a new method of imputation for missing data is proposed. This methodology is applied to the Dutch Lexicon Project database recently published by Keuleers, Diependaele, and Brysbaert (Frontiers in Psychology, 1, 174, 2010), which allows us to conclude that this database fulfills the conditions of use of the method recently proposed by Courrieu, Brand-D'Abrescia, Peereman, Spieler, and Rey (2011) for testing item performance models. Two application programs in MATLAB code are provided for the imputation of missing data in databases and for the computation of corrected statistics to test models.
引用
收藏
页码:310 / 330
页数:21
相关论文
共 7 条
  • [1] Missing data imputation and corrected statistics for large-scale behavioral databases
    Pierre Courrieu
    Arnaud Rey
    Behavior Research Methods, 2011, 43 : 310 - 330
  • [2] Edge-Based Missing Data Imputation in Large-Scale Environments
    Guastella, Davide Andrea
    Marcillaud, Guilhem
    Valenti, Cesare
    INFORMATION, 2021, 12 (05)
  • [3] Imputation of incomplete large-scale monitoring count data via penalized estimation
    Dakki, Mohamed
    Robin, Genevieve
    Suet, Marie
    Qninba, Abdeljebbar
    El Agbani, Mohammed A.
    Ouassou, Asmaa
    El Hamoumi, Rhimou
    Azafzaf, Hichem
    Rebah, Sami
    Feltrup-Azafzaf, Claudia
    Hamouda, Naoufel
    Ibrahim, Wed A. L.
    Asran, Hosni H.
    Elhady, Amr A.
    Ibrahim, Haitham
    Etayeb, Khaled
    Bouras, Essam
    Saied, Almokhtar
    Glidan, Ashrof
    Habib, Bakar M.
    Sayoud, Mohamed S.
    Bendjedda, Nadjiba
    Dami, Laura
    Deschamps, Clemence
    Gaget, Elie
    Mondain-Monval, Jean-Yves
    Defos du Rau, Pierre
    METHODS IN ECOLOGY AND EVOLUTION, 2021, 12 (06): : 1031 - 1039
  • [4] MIGHT: Statistical Methodology for Missing-Data Imputation in Food Composition Databases
    Ispirova, Gordana
    Eftimov, Tome
    Korosec, Peter
    Seljak, Barbara Korousic
    APPLIED SCIENCES-BASEL, 2019, 9 (19):
  • [5] Geostatistical modeling of dependent credit spreads: Estimation of large covariance matrices and imputation of missing data
    Huettner, Amelie
    Scherer, Matthias
    Graeler, Benedikt
    JOURNAL OF BANKING & FINANCE, 2020, 118
  • [6] One Model to Synthesize Them All: Multi-Contrast Multi-Scale Transformer for Missing Data Imputation
    Liu, Jiang
    Pasumarthi, Srivathsa
    Duffy, Ben
    Gong, Enhao
    Datta, Keshav
    Zaharchuk, Greg
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (09) : 2577 - 2591
  • [7] Relationships between event-related potentials and behavioral and scholastic measures of reading ability: A large-scale, cross-sectional study
    Khalifian, Negin
    Stites, Mallory C.
    Laszlo, Sarah
    DEVELOPMENTAL SCIENCE, 2016, 19 (05) : 723 - 740