First-principles study of copper nanoclusters for enhanced electrochemical CO2 reduction to CH4

被引:26
|
作者
Shin, Dong Yun [1 ]
Won, Jung Sik [1 ]
Kwon, Jeong An [1 ]
Kim, Min -Su [1 ]
Lim, Dong-Hee [1 ]
机构
[1] Chungbuk Natl Univ, Dept Environm Engn, Chungdae Ro 1, Cheongju 28644, Chungbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Cu nanocluster; CO2; reduction; Potential-limiting step; Density functional theory; Frontier molecular orbital theory; EFFECTIVE CORE POTENTIALS; INITIO MOLECULAR-DYNAMICS; SINGLE-CRYSTAL ELECTRODES; CARBON-DIOXIDE REDUCTION; AUGMENTED-WAVE METHOD; ORGANIC-COMPOUNDS; OXYGEN REDUCTION; METAL-ELECTRODES; NANOPARTICLES; TRANSITION;
D O I
10.1016/j.comptc.2017.10.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The conversion of carbon dioxide (CO2) into usable hydrocarbon fuels is important for recycling carbon resources and mitigating environmental problems. However, converting CO2, which is a stable compound, requires a high additional energy. Therefore, it is essential to understand the electrochemical reduction mechanisms of CO2 and develop more efficient catalysts. In this study, density functional theory calculations were performed to examine electrochemical CO2 reduction on copper nanoclusters (NCs) (ails NCs and Cuss NCs) and the Cu(1 11) surface to verify the effect of the surface geometry and size of the NCs on the conversion of CO2 into CH4. The highest energy barriers to CO2 reduction (i.e., the potential-limiting step) on the Cu-13 NCs (0.64 eV), Cuss NCs (0.83 eV), and Cu(1 11) surface (0.86 eV) lie in the CO* -> CHO* step. The formation of an adsorbed CHO intermediate depending on the catalyst surface geometry may significantly influence the energy barrier, as demonstrated by analyses of the electronic properties, such as the density of states, charge density difference, and highest occupied molecular orbital and lowest unoccupied molecular orbital band gap. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:84 / 90
页数:7
相关论文
共 50 条
  • [31] Effect of Bimetallic Dimer-Embedded TiO2(101) Surface on CO2 Reduction: The First-Principles Calculation
    Li, Chongyang
    Shang, Cui
    Zhao, Bin
    Zhang, Gang
    Liu, Liangliang
    Yang, Wentao
    Chen, Zhiquan
    MATERIALS, 2022, 15 (07)
  • [32] Construction of a Photo-thermal-magnetic coupling reaction system for enhanced CO2 reduction to CH4
    Li, Naixu
    Tu, Ying
    Wang, Ke
    Huang, Dongxiao
    Shen, Quanhao
    Chen, Wenshuai
    Zhou, Jiancheng
    Ma, Quanhong
    Liu, Maochang
    CHEMICAL ENGINEERING JOURNAL, 2021, 421
  • [33] A First-Principles Study on the Reaction Mechanisms of Electrochemical CO2 Reduction to C1 and C2 Products on Cu(110)
    Xu, Yangyang
    Zhang, Lixin
    CATALYSTS, 2024, 14 (07)
  • [34] First-Principles Study on the Molecular Mechanism of Solar-Driven CO2 Reduction on H-Terminated Si
    Ji, Yongfei
    Wang, Gang
    Fan, Ting
    Luo, Yi
    CHEMSUSCHEM, 2020, 13 (13) : 3524 - 3529
  • [35] Z-scheme heterojunction enhanced photocatalytic performance for CO2 reduction to CH4
    Feng, Bangli
    Wang, Qian
    Liu, Peng
    Yuan, Zibo
    Pan, Danxuan
    Ye, Mingfu
    Shen, Kejing
    Xin, Zhifeng
    NANOSCALE, 2024, 16 (37) : 17616 - 17623
  • [36] Electrochemical CO2 reduction in confined space: Enhanced activity of metal catalysts by graphene overlayer
    Lin, Zheng-Zhe
    Chen, Xi
    Yin, Cong
    Yue, Lan
    Meng, Fan-Xin
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (02) : 784 - 794
  • [37] Surface Morphology Engineering of Copper Electrodes toward Enhanced CO2 Electrochemical Reduction Reaction
    Yoshihara, Naoki
    Saito, Hiroki
    Noda, Masaru
    CHEMISTRY LETTERS, 2018, 47 (09) : 1165 - 1168
  • [38] Electrochemical Reduction of CO2 at Copper Nanofoams
    Sen, Sujat
    Liu, Dan
    Palmore, G. Tayhas R.
    ACS CATALYSIS, 2014, 4 (09): : 3091 - 3095
  • [39] Study of PdO species on surface of TiO2 for photoreduction of CO2 into CH4
    Zhao, Qiao
    Li, Hanbo
    Zhang, Lixin
    Cao, Yaan
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2019, 384
  • [40] Bimetallic doped C2N catalyzed CO2 reduction to ethylene: A first-principles study
    Li, JiaZhen
    Meng, Yue
    Gao, Zhiyan
    Xie, Bo
    Xia, Shengjie
    Fu, Zhisheng
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 323