A deep learning approach for complex microstructure inference

被引:65
作者
Durmaz, Ali Riza [1 ,2 ,3 ]
Mueller, Martin [4 ,5 ]
Lei, Bo [6 ]
Thomas, Akhil [1 ,3 ]
Britz, Dominik [4 ,5 ]
Holm, Elizabeth A. [6 ]
Eberl, Chris [1 ,3 ]
Mucklich, Frank [4 ,5 ]
Gumbsch, Peter [1 ,2 ]
机构
[1] Fraunhofer Inst Mech Mat IWM, D-79108 Freiburg, Germany
[2] Karlsruhe Inst Technol KIT, Inst Appl Mat IAM, D-76131 Karlsruhe, Germany
[3] Univ Freiburg, D-79110 Freiburg, Germany
[4] Saarland Univ, Dept Mat Sci, D-66123 Saarbrucken, Germany
[5] Mat Engn Ctr Saarland, D-66123 Saarbrucken, Germany
[6] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
QUANTIFICATION; STEEL; EBSD; REGISTRATION; STRENGTH;
D O I
10.1038/s41467-021-26565-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Segmentation and classification of microstructures are required by quality control and materials development. The authors apply deep learning for the segmentation of complex phase steel microstructures, providing a bridge between experimental and computational methods for materials analysis. Automated, reliable, and objective microstructure inference from micrographs is essential for a comprehensive understanding of process-microstructure-property relations and tailored materials development. However, such inference, with the increasing complexity of microstructures, requires advanced segmentation methodologies. While deep learning offers new opportunities, an intuition about the required data quality/quantity and a methodological guideline for microstructure quantification is still missing. This, along with deep learning's seemingly intransparent decision-making process, hampers its breakthrough in this field. We apply a multidisciplinary deep learning approach, devoting equal attention to specimen preparation and imaging, and train distinct U-Net architectures with 30-50 micrographs of different imaging modalities and electron backscatter diffraction-informed annotations. On the challenging task of lath-bainite segmentation in complex-phase steel, we achieve accuracies of 90% rivaling expert segmentations. Further, we discuss the impact of image context, pre-training with domain-extrinsic data, and data augmentation. Network visualization techniques demonstrate plausible model decisions based on grain boundary morphology.
引用
收藏
页数:15
相关论文
共 58 条
[11]   Albumentations: Fast and Flexible Image Augmentations [J].
Buslaev, Alexander ;
Iglovikov, Vladimir I. ;
Khvedchenya, Eugene ;
Parinov, Alex ;
Druzhinin, Mikhail ;
Kalinin, Alexandr A. .
INFORMATION, 2020, 11 (02)
[12]   CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts [J].
Carreira, Joao ;
Sminchisescu, Cristian .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (07) :1312-1328
[13]   Phase quantification in low carbon Nb-Mo bearing steel by electron backscatter diffraction technique coupled with kernel average misorientation [J].
Chen, Yu-Wen ;
Tsai, Yu-Ting ;
Tung, Po-Yen ;
Tsai, Shao-Pu ;
Chen, Chih-Yuan ;
Wang, Shing-Hao ;
Yang, Jer-Ren .
MATERIALS CHARACTERIZATION, 2018, 139 :49-58
[14]   High Throughput Quantitative Metallography for Complex Microstructures Using Deep Learning: A Case Study in Ultrahigh Carbon Steel [J].
DeCost, Brian L. ;
Lei, Bo ;
Francis, Toby ;
Holm, Elizabeth A. .
MICROSCOPY AND MICROANALYSIS, 2019, 25 (01) :21-29
[15]   UHCSDB: UltraHigh Carbon Steel Micrograph DataBase Tools for Exploring Large Heterogeneous Microstructure Datasets [J].
DeCost, Brian L. ;
Hecht, Matthew D. ;
Francis, Toby ;
Webler, Bryan A. ;
Picard, Yoosuf N. ;
Holm, Elizabeth A. .
INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2017, 6 (02) :197-205
[16]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[17]   The Importance of Skip Connections in Biomedical Image Segmentation [J].
Drozdzal, Michal ;
Vorontsov, Eugene ;
Chartrand, Gabriel ;
Kadoury, Samuel ;
Pal, Chris .
DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS, 2016, 10008 :179-187
[18]   U-Net: deep learning for cell counting, detection, and morphometry [J].
Falk, Thorsten ;
Mai, Dominic ;
Bensch, Robert ;
Cicek, Oezguen ;
Abdulkadir, Ahmed ;
Marrakchi, Yassine ;
Boehm, Anton ;
Deubner, Jan ;
Jaeckel, Zoe ;
Seiwald, Katharina ;
Dovzhenko, Alexander ;
Tietz, Olaf ;
Dal Bosco, Cristina ;
Walsh, Sean ;
Saltukoglu, Deniz ;
Tay, Tuan Leng ;
Prinz, Marco ;
Palme, Klaus ;
Simons, Matias ;
Diester, Ilka ;
Brox, Thomas ;
Ronneberger, Olaf .
NATURE METHODS, 2019, 16 (01) :67-+
[19]   Pixel Transposed Convolutional Networks [J].
Gao, Hongyang ;
Yuan, Hao ;
Wang, Zhengyang ;
Ji, Shuiwang .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (05) :1218-1227
[20]   Learning from Imbalanced Data [J].
He, Haibo ;
Garcia, Edwardo A. .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2009, 21 (09) :1263-1284