A deep learning approach for complex microstructure inference

被引:65
作者
Durmaz, Ali Riza [1 ,2 ,3 ]
Mueller, Martin [4 ,5 ]
Lei, Bo [6 ]
Thomas, Akhil [1 ,3 ]
Britz, Dominik [4 ,5 ]
Holm, Elizabeth A. [6 ]
Eberl, Chris [1 ,3 ]
Mucklich, Frank [4 ,5 ]
Gumbsch, Peter [1 ,2 ]
机构
[1] Fraunhofer Inst Mech Mat IWM, D-79108 Freiburg, Germany
[2] Karlsruhe Inst Technol KIT, Inst Appl Mat IAM, D-76131 Karlsruhe, Germany
[3] Univ Freiburg, D-79110 Freiburg, Germany
[4] Saarland Univ, Dept Mat Sci, D-66123 Saarbrucken, Germany
[5] Mat Engn Ctr Saarland, D-66123 Saarbrucken, Germany
[6] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
QUANTIFICATION; STEEL; EBSD; REGISTRATION; STRENGTH;
D O I
10.1038/s41467-021-26565-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Segmentation and classification of microstructures are required by quality control and materials development. The authors apply deep learning for the segmentation of complex phase steel microstructures, providing a bridge between experimental and computational methods for materials analysis. Automated, reliable, and objective microstructure inference from micrographs is essential for a comprehensive understanding of process-microstructure-property relations and tailored materials development. However, such inference, with the increasing complexity of microstructures, requires advanced segmentation methodologies. While deep learning offers new opportunities, an intuition about the required data quality/quantity and a methodological guideline for microstructure quantification is still missing. This, along with deep learning's seemingly intransparent decision-making process, hampers its breakthrough in this field. We apply a multidisciplinary deep learning approach, devoting equal attention to specimen preparation and imaging, and train distinct U-Net architectures with 30-50 micrographs of different imaging modalities and electron backscatter diffraction-informed annotations. On the challenging task of lath-bainite segmentation in complex-phase steel, we achieve accuracies of 90% rivaling expert segmentations. Further, we discuss the impact of image context, pre-training with domain-extrinsic data, and data augmentation. Network visualization techniques demonstrate plausible model decisions based on grain boundary morphology.
引用
收藏
页数:15
相关论文
共 58 条
[1]  
[Anonymous], 2015, P INT C LEARN REPR
[2]  
[Anonymous], 2018, LECT NOTES COMPUT SC, DOI [DOI 10.1007/978-3-030-01216-8_6, 10.1007/978-3-030-01216-8_6]
[3]  
[Anonymous], 1970, PICTURE PROCESSING P
[4]  
Archie Fady, 2017, Materials Science Forum, V879, P157, DOI 10.4028/www.scientific.net/MSF.879.157
[5]  
Arganda-Carreras I, 2006, LECT NOTES COMPUT SC, V4241, P85
[6]   The first annotated set of scanning electron microscopy images for nanoscience [J].
Aversa, Rossella ;
Modarres, Mohammad Hadi ;
Cozzini, Stefano ;
Ciancio, Regina ;
Chiusole, Alberto .
SCIENTIFIC DATA, 2018, 5
[7]   Advanced Steel Microstructural Classification by Deep Learning Methods [J].
Azimi, Seyed Majid ;
Britz, Dominik ;
Engstler, Michael ;
Fritz, Mario ;
Muecklich, Frank .
SCIENTIFIC REPORTS, 2018, 8
[8]   Network Dissection: Quantifying Interpretability of Deep Visual Representations [J].
Bau, David ;
Zhou, Bolei ;
Khosla, Aditya ;
Oliva, Aude ;
Torralba, Antonio .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :3319-3327
[9]  
Britz D, 2017, PRAKT METALLOGR-PR M, V54, P684
[10]   Pattern recognition with machine learning on optical microscopy images of typical metallurgical microstructures [J].
Bulgarevich, Dmitry S. ;
Tsukamoto, Susumu ;
Kasuya, Tadashi ;
Demura, Masahiko ;
Watanabe, Makoto .
SCIENTIFIC REPORTS, 2018, 8