In vivo functional analysis reveals specific roles for the integrin-binding sites of talin

被引:30
作者
Ellis, Stephanie J. [1 ]
Pines, Mary [1 ]
Fairchild, Michael J. [1 ]
Tanentzapf, Guy [1 ]
机构
[1] Univ British Columbia, Inst Life Sci, Dept Cellular & Physiol Sci, Vancouver, BC V6T 1Z3, Canada
基金
加拿大健康研究院; 加拿大自然科学与工程研究理事会;
关键词
Cell adhesion; Drosophila; Integrin; Morphogenesis; Talin; CYTOPLASMIC DOMAIN; STRUCTURAL DETERMINANTS; PROTEIN; ACTIVATION; KINASE; CYTOSKELETON; DISRUPTION; ADHESION; SUBUNIT; COMPLEX;
D O I
10.1242/jcs.083337
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Adhesion receptors play diverse roles during animal development and require precise spatiotemporal regulation, which is achieved through the activity of their binding partners. Integrins, adhesion receptors that mediate cell attachment to the extracellular matrix (ECM), connect to the intracellular environment through the cytoplasmic adapter protein talin. Talin has two essential functions: orchestrating the assembly of the intracellular adhesion complex (IAC), which associates with integrin, and regulating the affinity of integrins for the ECM. Talin can bind to integrins through two different integrin-binding sites (IBS-1 and IBS-2, respectively). Here, we have investigated the roles of each in the context of Drosophila development. We find that although IBS-1 and IBS-2 are partially redundant, they each have specialized roles during development: IBS-1 reinforces integrin attachment to the ECM, whereas IBS-2 reinforces the link between integrins and the IAC. Disruption of each IBS has different developmental consequences, illustrating how the functional diversity of integrin-mediated adhesion is achieved.
引用
收藏
页码:1844 / 1856
页数:13
相关论文
共 42 条
[1]   The structure of an integrin/talin complex reveals the basis of inside-out signal transduction [J].
Anthis, Nicholas J. ;
Wegener, Kate L. ;
Ye, Feng ;
Kim, Chungho ;
Goult, Benjamin T. ;
Lowe, Edward D. ;
Vakonakis, Ioannis ;
Bate, Neil ;
Critchley, David R. ;
Ginsberg, Mark H. ;
Campbell, Iain D. .
EMBO JOURNAL, 2009, 28 (22) :3623-3632
[2]   Integrins in development:: Moving on, responding to, and sticking to the extracellular matrix [J].
Bökel, C ;
Brown, NH .
DEVELOPMENTAL CELL, 2002, 3 (03) :311-321
[3]   Integrins as mediators of morphogenesis in Drosophila [J].
Brown, NH ;
Gregory, SL ;
Martin-Bermudo, ZD .
DEVELOPMENTAL BIOLOGY, 2000, 223 (01) :1-16
[4]   Talin is essential for integrin function in Drosophila [J].
Brown, NH ;
Gregory, SL ;
Rickoll, WL ;
Fessler, LI ;
Prout, M ;
White, RAH ;
Fristrom, JW .
DEVELOPMENTAL CELL, 2002, 3 (04) :569-579
[5]   The talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation [J].
Calderwood, DA ;
Zent, R ;
Grant, R ;
Rees, DJG ;
Hynes, RO ;
Ginsberg, MH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (40) :28071-28074
[6]   Integrin activation [J].
Calderwood, DA .
JOURNAL OF CELL SCIENCE, 2004, 117 (05) :657-666
[7]   The phosphotyrosine binding-like domain of talin activates Integrins [J].
Calderwood, DA ;
Yan, BX ;
de Pereda, JM ;
Alvarez, BG ;
Fujioka, Y ;
Liddington, RC ;
Ginsberg, MH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (24) :21749-21758
[8]   Crystal Structure of the Talin Integrin Binding Domain 2 [J].
Cheung, Tsz Ying Sylvia ;
Fairchild, Michael J. ;
Zarivach, Raz ;
Tanentzapf, Guy ;
Van Petegem, Filip .
JOURNAL OF MOLECULAR BIOLOGY, 2009, 387 (04) :787-793
[9]  
Chou TB, 1996, GENETICS, V144, P1673
[10]   Analysis of PINCH function in Drosophila demonstrates its requirement in integrin-dependent cellular processes [J].
Clark, KA ;
McGrail, M ;
Beckerle, MC .
DEVELOPMENT, 2003, 130 (12) :2611-2621