Dipole solitons in an extended nonlinear Schrodinger's equation with higher-order even and odd terms

被引:20
作者
Chettouh, Saida [1 ]
Triki, Houria [1 ]
El-Akrmi, Abdulssetar [1 ]
Zhou, Qin [2 ]
Moshokoa, S. P. [3 ]
Ullah, Malik Zaka [4 ]
Biswas, Anjan [3 ,4 ]
Belic, Milivoj [5 ]
机构
[1] Badji Mokhtar Univ, Dept Phys, Radiat Phys Lab, Fac Sci, POB 12, Annaba 23000, Algeria
[2] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Hubei, Peoples R China
[3] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[4] King Abdulaziz Univ, Fac Sci, Dept Math, Operator Theory & Applicat Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
[5] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
来源
OPTIK | 2017年 / 145卷
基金
美国国家科学基金会;
关键词
Dipole soliton; Dispersion; Kerr law; SOLITARY WAVE SOLUTIONS; NON-KERR TERMS; DISPERSIVE DIELECTRIC FIBERS; OPTICAL SOLITONS; MEDIA; LAW; TRANSMISSION; PULSES;
D O I
10.1016/j.ijleo.2017.08.034
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the extended nonlinear Schrodinger equation with higher-order odd and even terms. The model includes additional higher-order dispersion and nonlinear terms that are most important for applications in fiber optics, in the case of the Heisenberg spin chain, and for ocean waves. Special exact solutions in the form of a dipole soliton is obtained, by adopting a complex amplitude ansatz composed of the product of bright and dark solitary waves. The conditions on the system parameters for the existence of this localized structure are also reported. The derived solution characteristically exists due to a balance among physical effects of different nature. Numerical results and discussions are also presented. (C) 2017 Elsevier GmbH. All rights reserved.
引用
收藏
页码:644 / 649
页数:6
相关论文
共 50 条
[31]   Solitons and Other Solutions for the Generalized KdV-mKdV Equation with Higher-order Nonlinear Terms [J].
Zayed, Elsayd M. E. ;
Al-Nowehy, Abdul-Ghani .
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2016, 29 (03) :218-245
[32]   Multipole solitary wave solutions of the higher-order nonlinear Schrodinger equation with quintic non-Kerr terms [J].
Triki, Houria ;
Azzouzi, Faical ;
Grelu, Philippe .
OPTICS COMMUNICATIONS, 2013, 309 :71-79
[33]   Breathers and multi-soliton solutions for the higher-order generalized nonlinear Schrodinger equation [J].
Guo, Rui ;
Hao, Hui-Qin .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (09) :2426-2435
[34]   Anti-dark solitons for a variable-coefficient higher-order nonlinear Schrodinger equation in an inhomogeneous optical fiber [J].
Feng, Yu-Jie ;
Gao, Yi-Tian ;
Sun, Zhi-Yuan ;
Zuo, Da-Wei ;
Shen, Yu-Jia ;
Sun, Yu-Hao ;
Xue, Long ;
Yu, Xin .
PHYSICA SCRIPTA, 2015, 90 (04)
[35]   Dark solitons for a variable-coefficient higher-order nonlinear Schrodinger equation in the inhomogeneous optical fiber [J].
Sun, Yan ;
Tian, Bo ;
Wu, Xiao-Yu ;
Liu, Lei ;
Yuan, Yu-Qiang .
MODERN PHYSICS LETTERS B, 2017, 31 (12)
[36]   Optical solitons in monomode fibers with higher order nonlinear Schrodinger equation [J].
Tariq, Kalim U. ;
Younis, Muhammad ;
Rizvi, S. T. R. .
OPTIK, 2018, 154 :360-371
[37]   Solitary wave solutions of higher-order nonlinear Schrodinger equation with derivative non-Kerr nonlinear terms [J].
Sharma, Vivek Kumar ;
De, K. K. ;
Goyal, Amit .
2013 WORKSHOP ON RECENT ADVANCES IN PHOTONICS (WRAP), 2013,
[38]   Exact analytical solutions of higher-order nonlinear Schrodinger equation [J].
Wang, Hongcheng ;
Liang, Jianchu ;
Chen, Guihua ;
Zhou, Ling ;
Ling, Dongxiong ;
Liu, Minxia .
OPTIK, 2017, 131 :438-445
[39]   Higher-order derivative nonlinear Schrodinger equation in the critical case [J].
Naumkin, Pavel I. ;
Perez, Jhon J. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (02)
[40]   Bifurcation Analysis and Solutions of a Higher-Order Nonlinear Schrodinger Equation [J].
Li, Yi ;
Shan, Wen-rui ;
Shuai, Tianping ;
Rao, Ke .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015