Dipole solitons in an extended nonlinear Schrodinger's equation with higher-order even and odd terms

被引:20
作者
Chettouh, Saida [1 ]
Triki, Houria [1 ]
El-Akrmi, Abdulssetar [1 ]
Zhou, Qin [2 ]
Moshokoa, S. P. [3 ]
Ullah, Malik Zaka [4 ]
Biswas, Anjan [3 ,4 ]
Belic, Milivoj [5 ]
机构
[1] Badji Mokhtar Univ, Dept Phys, Radiat Phys Lab, Fac Sci, POB 12, Annaba 23000, Algeria
[2] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Hubei, Peoples R China
[3] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[4] King Abdulaziz Univ, Fac Sci, Dept Math, Operator Theory & Applicat Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
[5] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
来源
OPTIK | 2017年 / 145卷
基金
美国国家科学基金会;
关键词
Dipole soliton; Dispersion; Kerr law; SOLITARY WAVE SOLUTIONS; NON-KERR TERMS; DISPERSIVE DIELECTRIC FIBERS; OPTICAL SOLITONS; MEDIA; LAW; TRANSMISSION; PULSES;
D O I
10.1016/j.ijleo.2017.08.034
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the extended nonlinear Schrodinger equation with higher-order odd and even terms. The model includes additional higher-order dispersion and nonlinear terms that are most important for applications in fiber optics, in the case of the Heisenberg spin chain, and for ocean waves. Special exact solutions in the form of a dipole soliton is obtained, by adopting a complex amplitude ansatz composed of the product of bright and dark solitary waves. The conditions on the system parameters for the existence of this localized structure are also reported. The derived solution characteristically exists due to a balance among physical effects of different nature. Numerical results and discussions are also presented. (C) 2017 Elsevier GmbH. All rights reserved.
引用
收藏
页码:644 / 649
页数:6
相关论文
共 50 条
[21]   Dark and dark-like-bright solitons for a higher-order nonlinear Schrodinger equation in optical fibers [J].
Jiang, Yan ;
Tian, Bo .
EPL, 2013, 102 (01)
[22]   N-dark-dark solitons for the coupled higher-order nonlinear Schrodinger equations in optical fibers [J].
Zhang, Hai-Qiang ;
Wang, Yue .
MODERN PHYSICS LETTERS B, 2017, 31 (33)
[23]   Integrability and solitons for the higher-order nonlinear Schrodinger equation with space-dependent coefficients in an optical fiber [J].
Su, Jing-Jing ;
Gao, Yi-Tian .
EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (03)
[24]   Hirota bilinearization of coupled higher-order nonlinear Schrodinger equation [J].
Nandy, Sudipta ;
Sarma, Debojit ;
Barthakur, Abhijit ;
Borah, Abhijit .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (11) :3386-3389
[25]   Conservation laws, bound-state solitons and modulation instability for a variable-coefficient higher-order nonlinear Schrodinger equation in an optical fiber [J].
Yang, Sheng-Xiong ;
Wang, Yu-Feng ;
Jia, Rui-Rui .
PHYSICA SCRIPTA, 2023, 98 (12)
[26]   A higher-order perturbation analysis of the nonlinear Schrodinger equation [J].
Bonetti, J. ;
Hernandez, S. M. ;
Fierens, P., I ;
Grosz, D. F. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 72 :152-161
[27]   Conversions and interactions of the nonlinear waves in a generalized higher-order nonlinear Schrodinger equation [J].
Cao, Bo ;
Zhang, Huan .
OPTIK, 2018, 158 :112-117
[28]   The generalized higher-order nonlinear Schrodinger equation: Optical solitons and other solutions in fiber optics [J].
Younas, Usman ;
Baber, M. Z. ;
Yasin, M. W. ;
Sulaiman, T. A. ;
Ren, Jingli .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (18)
[29]   Modulation stability and optical soliton solutions of nonlinear Schrodinger equation with higher order dispersion and nonlinear terms and its applications [J].
Arshad, Muhammad ;
Seadawy, Aly R. ;
Lu, Dianchen .
SUPERLATTICES AND MICROSTRUCTURES, 2017, 112 :422-434
[30]   SELF-SIMILAR SOLUTIONS FOR A GENERALIZED NONLINEAR SCHRODINGER EQUATION WITH HIGHER-ORDER VARYING DISPERSIONS AND NONLINEARITIES [J].
Hao, Wen-Xuan ;
Wang, Yan ;
Li, Lu .
ROMANIAN REPORTS IN PHYSICS, 2021, 73 (04)