Extraction of Retinal Vasculature by using morphology in Fundus Images

被引:0
|
作者
Sengar, Namita [1 ]
Dutta, Malay Kishore
Parthasarthi, M.
Burget, Radim
机构
[1] Amity Univ Noida, Amity Sch Engn & Technol, Dept Elect & Commun, Noida, India
关键词
Blood Vessels; Fundus image processing; morphological operators;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper algorithm is proposed for detection of vessels present in a fundus image of an eye. Blood vessels extraction and removal are used to detect the other artifacts like lesions, the fovea and optic nerve. The proposed algorithm used the combination of different morphological operators which make this method less complex and also computationally efficient. Two different channels of an image green and L respectively are utilized to get the final vessel structure. This method also gives the region of interest for macula which may make macula detection easy. The proposed algorithm is tested on DRIVE data set of fundus image of an eye. The result gives good detection of vessel structure and the proposed method is computationally efficient.
引用
收藏
页码:139 / 142
页数:4
相关论文
共 50 条
  • [31] Aligning fundus images via the automatic extraction of retinal surface vessels
    Holm, S.
    McLoughlin, N.
    PERCEPTION, 2012, 41 : 103 - 103
  • [32] Retinal Hemorrhage Detection Using Splat Segmentation of Retinal Fundus Images
    Kurale, Nishigandha G.
    Vaidya, M. V.
    2017 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, CONTROL AND AUTOMATION (ICCUBEA), 2017,
  • [33] A Review: Person Identification using Retinal Fundus Images
    Elangovan, Poonguzhali
    Nath, Malaya Kumar
    INTERNATIONAL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2019, 65 (04) : 585 - 596
  • [34] Large Receptive Field Fully Convolutional Network for Semantic Segmentation of Retinal Vasculature in Fundus Images
    Lepetit-Aimon, Gabriel
    Duval, Renaud
    Cheriet, Farida
    COMPUTATIONAL PATHOLOGY AND OPHTHALMIC MEDICAL IMAGE ANALYSIS, 2018, 11039 : 201 - 209
  • [35] Automated extraction of retinal vasculature
    Tan, Jen Hong
    Acharya, U. Rajendra
    Chua, Kuang Chua
    Cheng, Calvin
    Laude, Augustinus
    MEDICAL PHYSICS, 2016, 43 (05) : 2311 - 2322
  • [36] Retinal Microvascular Biomarker Extraction on Fundus Images from the Maastricht Study Using Supervised Deep Learning
    Heslinga, Friso G.
    Pluim, Josien P. W.
    Dashtbozorg, Behdad
    Berendschot, Tos T. J. M.
    Houben, A. J. H. M.
    Veta, Mitko
    JOURNAL OF VASCULAR RESEARCH, 2019, 56 : 120 - 120
  • [37] Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms
    Can, A.H.
    Shen, Hong
    Turner, James N.
    Tanenbaum, Howard L.
    Roysam, Badrinath
    IEEE Transactions on Information Technology in Biomedicine, 1999, 3 (02): : 125 - 138
  • [38] Enhancing Vessel Segment Extraction in Retinal Fundus Images Using Retinal Image Analysis and Six Sigma Process Capability Index
    Badawi, Sufian A.
    Takruri, Maen
    ElBadawi, Isam
    Chaudhry, Imran Ali
    Mahar, Nasr Ullah
    Nileshwar, Ajay Kamath
    Mosalam, Emad
    MATHEMATICS, 2023, 11 (14)
  • [39] Contrast Enhancement of Retinal Vasculature in Digital Fundus Image
    Fadzil, M. H. Ahmad
    Nugroho, H. Adi
    Nugroho, H.
    Iznita, I. Lila
    ICDIP 2009: INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING, PROCEEDINGS, 2009, : 137 - 141
  • [40] A Computationally Efficient Red-Lesion Extraction Method for Retinal Fundus Images
    Monemian, Maryam
    Rabbani, Hossein
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72