q-SERIES RECIPROCITIES AND FURTHER π-FORMULAE

被引:9
作者
Chu, Wenchang [1 ,2 ]
机构
[1] Zhoukou Normal Univ, Sch Math & Stat, Zhoukou 466001, Peoples R China
[2] Univ Salento, Dipartimento Matemat & Fis Ennio De Giorgi, POB 193, I-73100 Lecce, Italy
关键词
Infinite series of Ramanujan-type; Well-poised series; Quadratic series; Cubic series; Reciprocal relation of q-series; RAMANUJAN-TYPE SERIES; 1/PI;
D O I
10.2996/kmj/1540951251
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By examining reciprocal relations of basic well-poised, quadratic and cubic series, we establish q-analogues of three infinite series for 1/pi(2) due to Guillera (2003) and lambda-parameter extensions of three infinite series for 1/pi(2) due to Ramanujan (1914). Several further infinite series identities of Ramanujan-type are also derived as consequences.
引用
收藏
页码:512 / 530
页数:19
相关论文
共 21 条
[1]   A simple formula for pi [J].
Adamchik, V ;
Wagon, S .
AMERICAN MATHEMATICAL MONTHLY, 1997, 104 (09) :852-855
[2]  
Bailey W.N., 1935, Generalized Hypergeometric Series
[3]   CLASS NUMBER 3 RAMANUJAN TYPE SERIES FOR 1/PI [J].
BORWEIN, JM ;
BORWEIN, PB .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1993, 46 (1-2) :281-290
[4]  
BORWEIN JM, 1988, RAMANUJAN REVISITED, P359
[5]   More formulas for π [J].
Chan, HC .
AMERICAN MATHEMATICAL MONTHLY, 2006, 113 (05) :452-455
[6]   Cubic modular equations and new Ramanujan-type series for 1/π [J].
Chan, HH ;
Liaw, WC .
PACIFIC JOURNAL OF MATHEMATICS, 2000, 192 (02) :219-238
[7]   Ramanujan's class invariant λn and a new class of series for 1/π [J].
Chan, HH ;
Liaw, WC ;
Tan, V .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 :93-106
[8]  
Chu WC, 2014, MATH COMPUT, V83, P475
[9]   π-formulas implied by Dougall's summation theorem for 5F4-series [J].
Chu, Wenchang .
RAMANUJAN JOURNAL, 2011, 26 (02) :251-255
[10]   Partial sums of Bailey's 6ψ6-series to faster convergent series [J].
Chu, Wenchang ;
Zhang, Wenlong .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2012, 18 (02) :239-260