A Novel Convolutional Neural Network Classification Approach of Motor-Imagery EEG Recording Based on Deep Learning

被引:11
|
作者
Echtioui, Amira [1 ]
Mlaouah, Ayoub [2 ,3 ,4 ]
Zouch, Wassim [5 ]
Ghorbel, Mohamed [1 ]
Mhiri, Chokri [6 ,7 ]
Hamam, Habib [2 ,8 ,9 ]
机构
[1] Sfax Univ, ENIS, ATMS Lab, Adv Technol Med & Signals, Sfax 3038, Tunisia
[2] Univ De Moncton, Fac Engn, Moncton, NB E1A 3E9, Canada
[3] Higher Inst Comp Sci & Math Monastir ISIMM, Monastir 5000, Tunisia
[4] Private Higher Sch Engn & Technol ESPRIT, Ariana 2083, Tunisia
[5] King Abdulaziz Univ KAU, Fac Engn, Elect & Comp Engn Dept, Jeddah 21589, Saudi Arabia
[6] Habib Bourguiba Univ Hosp, Dept Neurol, Sfax 3029, Tunisia
[7] Sfax Univ, Fac Med, Neurosci Lab LR 12 SP 19, Sfax 3029, Tunisia
[8] Spectrum Knowledge Prod & Skills Dev, Sfax 3027, Tunisia
[9] Univ Johannesburg, Sch Elect Engn & Elect Engn, ZA-2006 Johannesburg, South Africa
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 21期
关键词
EEG; BCI; motor imagery; Common Spatial Pattern (CSP); Wavelet Packet Decomposition (WPD); deep learning; CNN; Long Short-Term Memory (LSTM); merged CNNs; MULTILEVEL; PATTERN;
D O I
10.3390/app11219948
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently, Electroencephalography (EEG) motor imagery (MI) signals have received increasing attention because it became possible to use these signals to encode a person's intention to perform an action. Researchers have used MI signals to help people with partial or total paralysis, control devices such as exoskeletons, wheelchairs, prostheses, and even independent driving. Therefore, classifying the motor imagery tasks of these signals is important for a Brain-Computer Interface (BCI) system. Classifying the MI tasks from EEG signals is difficult to offer a good decoder due to the dynamic nature of the signal, its low signal-to-noise ratio, complexity, and dependence on the sensor positions. In this paper, we investigate five multilayer methods for classifying MI tasks: proposed methods based on Artificial Neural Network, Convolutional Neural Network 1 (CNN1), CNN2, CNN1 with CNN2 merged, and the modified CNN1 with CNN2 merged. These proposed methods use different spatial and temporal characteristics extracted from raw EEG data. We demonstrate that our proposed CNN1-based method outperforms state-of-the-art machine/deep learning techniques for EEG classification by an accuracy value of 68.77% and use spatial and frequency characteristics on the BCI Competition IV-2a dataset, which includes nine subjects performing four MI tasks (left/right hand, feet, and tongue). The experimental results demonstrate the feasibility of this proposed method for the classification of MI-EEG signals and can be applied successfully to BCI systems where the amount of data is large due to daily recording.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] An improved model using convolutional sliding window-attention network for motor imagery EEG classification
    Huang, Yuxuan
    Zheng, Jianxu
    Xu, Binxing
    Li, Xuhang
    Liu, Yu
    Wang, Zijian
    Feng, Hua
    Cao, Shiqi
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [42] Hybrid Zero-Training BCI based on Convolutional Neural Network for Lower-limb Motor-Imagery
    Jeong, Ji Hyeok
    Kim, Dong-Joo
    Kim, Hyungmin
    2021 9TH IEEE INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2021, : 9 - 12
  • [43] Hybrid deep neural network using transfer learning for EEG motor imagery decoding
    Zhang, Ruilong
    Zong, Qun
    Dou, Liqian
    Zhao, Xinyi
    Tang, Yifan
    Li, Zhiyu
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 63
  • [44] Motor imagery EEG classification using feedforward neural network
    Majoros, Tamas
    Oniga, Stefan
    Xie, Yu
    ANNALES MATHEMATICAE ET INFORMATICAE, 2021, 53 : 235 - 244
  • [45] Convolutional neural network with support vector machine for motor imagery EEG signal classification
    Amira Echtioui
    Wassim Zouch
    Mohamed Ghorbel
    Chokri Mhiri
    Multimedia Tools and Applications, 2023, 82 : 45891 - 45911
  • [46] Convolutional neural network with support vector machine for motor imagery EEG signal classification
    Echtioui, Amira
    Zouch, Wassim
    Ghorbel, Mohamed
    Mhiri, Chokri
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (29) : 45891 - 45911
  • [47] Simple Convolutional Neural Network for Left-Right Hands Motor Imagery EEG Signals Classification
    Tian, Geliang
    Liu, Yue
    INTERNATIONAL JOURNAL OF COGNITIVE INFORMATICS AND NATURAL INTELLIGENCE, 2019, 13 (03) : 36 - 49
  • [48] Multi-class Classification of Motor Imagery EEG Signals Using Deep Learning Models
    Khemakhem R.
    Belgacem S.
    Echtioui A.
    Ghorbel M.
    Ben Hamida A.
    Kammoun I.
    SN Computer Science, 5 (5)
  • [49] An Ensemble Classification Approach to Motor-Imagery Brain State Discrimination Problem
    Datta, Ankita
    Chatterjee, Rajdeep
    Sanyal, Debarshi Kumar
    Guha, Dibyajyoti
    2017 INTERNATIONAL CONFERENCE ON INFOCOM TECHNOLOGIES AND UNMANNED SYSTEMS (TRENDS AND FUTURE DIRECTIONS) (ICTUS), 2017, : 322 - 326
  • [50] Deep neural network with harmony search based optimal feature selection of EEG signals for motor imagery classification
    Nakra A.
    Duhan M.
    International Journal of Information Technology, 2023, 15 (2) : 611 - 625