A Novel Convolutional Neural Network Classification Approach of Motor-Imagery EEG Recording Based on Deep Learning

被引:11
|
作者
Echtioui, Amira [1 ]
Mlaouah, Ayoub [2 ,3 ,4 ]
Zouch, Wassim [5 ]
Ghorbel, Mohamed [1 ]
Mhiri, Chokri [6 ,7 ]
Hamam, Habib [2 ,8 ,9 ]
机构
[1] Sfax Univ, ENIS, ATMS Lab, Adv Technol Med & Signals, Sfax 3038, Tunisia
[2] Univ De Moncton, Fac Engn, Moncton, NB E1A 3E9, Canada
[3] Higher Inst Comp Sci & Math Monastir ISIMM, Monastir 5000, Tunisia
[4] Private Higher Sch Engn & Technol ESPRIT, Ariana 2083, Tunisia
[5] King Abdulaziz Univ KAU, Fac Engn, Elect & Comp Engn Dept, Jeddah 21589, Saudi Arabia
[6] Habib Bourguiba Univ Hosp, Dept Neurol, Sfax 3029, Tunisia
[7] Sfax Univ, Fac Med, Neurosci Lab LR 12 SP 19, Sfax 3029, Tunisia
[8] Spectrum Knowledge Prod & Skills Dev, Sfax 3027, Tunisia
[9] Univ Johannesburg, Sch Elect Engn & Elect Engn, ZA-2006 Johannesburg, South Africa
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 21期
关键词
EEG; BCI; motor imagery; Common Spatial Pattern (CSP); Wavelet Packet Decomposition (WPD); deep learning; CNN; Long Short-Term Memory (LSTM); merged CNNs; MULTILEVEL; PATTERN;
D O I
10.3390/app11219948
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently, Electroencephalography (EEG) motor imagery (MI) signals have received increasing attention because it became possible to use these signals to encode a person's intention to perform an action. Researchers have used MI signals to help people with partial or total paralysis, control devices such as exoskeletons, wheelchairs, prostheses, and even independent driving. Therefore, classifying the motor imagery tasks of these signals is important for a Brain-Computer Interface (BCI) system. Classifying the MI tasks from EEG signals is difficult to offer a good decoder due to the dynamic nature of the signal, its low signal-to-noise ratio, complexity, and dependence on the sensor positions. In this paper, we investigate five multilayer methods for classifying MI tasks: proposed methods based on Artificial Neural Network, Convolutional Neural Network 1 (CNN1), CNN2, CNN1 with CNN2 merged, and the modified CNN1 with CNN2 merged. These proposed methods use different spatial and temporal characteristics extracted from raw EEG data. We demonstrate that our proposed CNN1-based method outperforms state-of-the-art machine/deep learning techniques for EEG classification by an accuracy value of 68.77% and use spatial and frequency characteristics on the BCI Competition IV-2a dataset, which includes nine subjects performing four MI tasks (left/right hand, feet, and tongue). The experimental results demonstrate the feasibility of this proposed method for the classification of MI-EEG signals and can be applied successfully to BCI systems where the amount of data is large due to daily recording.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Motor imagery electroencephalography channel selection based on deep learning: A shallow convolutional neural network
    Amiri, Homa Kashefi
    Zarei, Masoud
    Daliri, Mohammad Reza
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 136
  • [32] MI-EEGNET: A novel convolutional neural network for motor imagery classification
    Riyad, Mouad
    Khalil, Mohammed
    Adib, Abdellah
    JOURNAL OF NEUROSCIENCE METHODS, 2021, 353
  • [33] Single-trial EEG classification of motor imagery using deep convolutional neural networks
    Tang, Zhichuan
    Li, Chao
    Sun, Shouqian
    OPTIK, 2017, 130 : 11 - 18
  • [34] EEG temporal information-based 1-D convolutional neural network for motor imagery classification
    Chu, Chaoqin
    Xiao, Qinkun
    Chang, Leran
    Shen, Jianing
    Zhang, Na
    Du, Yu
    Xing, Heng
    Gao, Hui
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (29) : 45747 - 45767
  • [35] SincMSNet: a Sinc filter convolutional neural network for EEG motor imagery classification
    Liu, Ke
    Yang, Mingzhao
    Xing, Xin
    Yu, Zhuliang
    Wu, Wei
    JOURNAL OF NEURAL ENGINEERING, 2023, 20 (05)
  • [36] PARRLLEL CONVOLUTIONAL-LINEAR NEURAL NETWORK FOR MOTOR IMAGERY CLASSIFICATION
    Sakhavi, Siavash
    Guan, Cuntai
    Yan, Shuicheng
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 2736 - 2740
  • [37] EEG temporal information-based 1-D convolutional neural network for motor imagery classification
    Chaoqin Chu
    Qinkun Xiao
    Leran Chang
    Jianing Shen
    Na Zhang
    Yu Du
    Heng Xing
    Hui Gao
    Multimedia Tools and Applications, 2023, 82 : 45747 - 45767
  • [38] Wasserstein generative adversarial network with gradient penalty and convolutional neural network based motor imagery EEG classification
    Xiong, Hui
    Li, Jiahe
    Liu, Jinzhen
    Song, Jinlong
    Han, Yuqing
    JOURNAL OF NEURAL ENGINEERING, 2024, 21 (04)
  • [39] Classification of EEG Signal Using Deep Learning Architectures Based Motor-Imagery for an Upper-Limb Rehabilitation Exoskeleton
    Maryam Khoshkhooy Titkanlou
    Duc Thien Pham
    Roman Mouček
    SN Computer Science, 6 (3)
  • [40] Transfer Learning based Motor Imagery Classification using Convolutional Neural Networks
    Parvan, Milad
    Ghiasi, Amir Rikhtehgar
    Rezaii, Tohid Yousefi
    Farzamnia, Ali
    2019 27TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2019), 2019, : 1825 - 1828