Vector spaces of skew-symmetric matrices of constant rank

被引:12
作者
Fania, Maria Lucia [2 ]
Mezzetti, Emilia [1 ]
机构
[1] Univ Trieste, Dipartimento Matemat & Informat, I-34127 Trieste, Italy
[2] Univ Aquila, Dipartimento Matemat Pura & Applicata, I-67100 Laquila, Italy
关键词
Skew-symmetric matrices; Grassmannian; Secant variety; Uniform bundle; Constant rank; VARIETIES;
D O I
10.1016/j.laa.2010.12.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the orbits of vector spaces of skew-symmetric matrices of constant rank 2r and type (N + 1) x (N + 1) ur der the natural action of SL(N + 1), over an algebraically closed field of characteristic zero. We give a complete description of the orbits for vector spaces of dimension 2, relating them to some 1-generic matrices of linear forms. We also show that, for each rank two vector bundle on P-2 defining a triple Veronese embedding of P-2 in G(1, 7), there exists a vector space of 8 x 8 skew-symmetric matrices of constant rank 6 whose kernel bundle is the dual of the given rank two vector bundle. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2383 / 2403
页数:21
相关论文
共 16 条
  • [1] [Anonymous], 1959, THEORY MATRICES
  • [2] [Anonymous], MACAULAY2 SOFTWARE S
  • [3] [Anonymous], 1980, PROGR MATH
  • [4] ARRONDO E, 1996, LECT NOTES SERIES U, V10
  • [5] On the construction of some Buchsbaum varieties and the Hilbert scheme of elliptic scrolls in IP5
    Bazan, D
    Mezzetti, E
    [J]. GEOMETRIAE DEDICATA, 2001, 86 (1-3) : 191 - 204
  • [6] On globally generated vector bundles on projective spaces
    Carlos Sierra, Jose
    Ugaglia, Luca
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (11) : 2141 - 2146
  • [7] De Poi P., 2005, PROJECTIVE VARIETIES, P209, DOI [10.1515/9783110199703.209, DOI 10.1515/9783110199703.209]
  • [8] DOLGACHEV I, 1973, DUKE MATH J, V73, P633
  • [9] VECTOR-SPACES OF MATRICES OF LOW RANK
    EISENBUD, D
    HARRIS, J
    [J]. ADVANCES IN MATHEMATICS, 1988, 70 (02) : 135 - 155
  • [10] Skew-symmetric matrices and Palatini scrolls
    Faenzi, Daniele
    Fania, Maria Lucia
    [J]. MATHEMATISCHE ANNALEN, 2010, 347 (04) : 859 - 883