Independent domination polynomial of zero-divisor graphs of commutative rings

被引:1
|
作者
Gursoy, Necla Kircali [1 ]
Ulker, Alper [2 ]
Gursoy, Arif [3 ]
机构
[1] Ege Univ, Tire Kutsan Vocat Sch, TR-35900 Tire, Bakirkoy, Turkey
[2] Istanbul Kultur Univ, Dept Math & Comp Sci, TR-34156 Istanbul, Turkey
[3] Ege Univ, Dept Math, TR-35100 Izmir, Turkey
关键词
Independent domination polynomial; Independent dominating set; Zero-divisor graph; Independent set; Domination number; Maximal independent set;
D O I
10.1007/s00500-077-07217-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An independent dominating set of a graph is a vertex subset that is both dominating and independent set in the graph, i.e., a maximal independent set. Also, the independent domination polynomial is an ordinary generating function for the number of independent dominating sets in the graph. In this paper, we examine independent domination polynomials of zero-divisor graphs of the ring Z(n) where n is an element of {2p, p(2), p(alpha), pq, p(2)q, pqr) and their roots. Finally, we prove the log-concavity and unimodality of their independent domination polynomials.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Co-Secure Domination in Zero-Divisor Graphs Γ(Zn)
    Ali, A. Mohamed
    Rajkumar, S.
    CONTEMPORARY MATHEMATICS, 2024, 5 (02): : 1515 - 1521
  • [42] On the genus of extended zero-divisor graph of commutative rings
    Nadeem ur Rehman
    Mohd Nazim
    K. Selvakumar
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 3541 - 3550
  • [43] Commutative rings and zero-divisor semigroups of regular polyhedrons
    Tang, Gaohua
    Su, Huadong
    Wei, Yangjiang
    RING THEORY 2007, PROCEEDINGS, 2009, : 200 - 209
  • [44] On the genus of extended zero-divisor graph of commutative rings
    Rehman, Nadeem Ur
    Nazim, Mohd
    Selvakumar, K.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (07) : 3541 - 3550
  • [45] Zero-divisor graphs and zero-divisor functors
    Sbarra, Enrico
    Zanardo, Maurizio
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023,
  • [46] Characterizations of zero-divisor graphs of certain rings
    Zhao, Ruju
    Wei, Junchao
    FILOMAT, 2023, 37 (24) : 8229 - 8236
  • [47] RECOVERING RINGS FROM ZERO-DIVISOR GRAPHS
    Redmond, Shane P.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (08)
  • [48] ZERO-DIVISOR GRAPHS OF ORE EXTENSION RINGS
    Afkhami, M.
    Khashyarmanesh, K.
    Khorsandi, M. R.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2011, 10 (06) : 1309 - 1317
  • [49] Finite Rings with Acyclic Zero-Divisor Graphs
    Monastyre, Anna S.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2024, 21 (01): : 405 - 416
  • [50] Complemented zero-divisor graphs and Boolean rings
    LaGrange, John D.
    JOURNAL OF ALGEBRA, 2007, 315 (02) : 600 - 611