Lattice contraction and magnetic and electronic transport properties of Mn3Zn1-xGexN

被引:126
作者
Sun, Ying
Wang, Cong [1 ]
Wen, Yongchun
Zhu, Kaigui
Zhao, Jingtai
机构
[1] Beijing Univ Aeronaut & Astronaut, Sch Sci, Ctr Condensed Matter & Mat Phys, Beijing 100083, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1063/1.2822813
中图分类号
O59 [应用物理学];
学科分类号
摘要
The lattice and electronic and magnetic transport properties of the antiperovskite structure Mn3Zn1-xGexN compounds were investigated. For Mn3ZnN, there is a magnetic transition from antiferromagnetic to paramagnetic near 185 K. Correspondingly, the resistivity shows an abrupt drop, but any sudden change of lattice parameters is not found. However, it is interesting that the partial substitution of Ge for Zn induces a lattice contraction near the magnetic transition temperature, where a drop of the resistivity remain, and the transition temperature point increases and the temperature range is broadened with increasing doped Ge contents. The thermodynamics properties were also investigated. (c) 2007 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 50 条
[31]   Magnetic and electronic transport properties of SrTiO3-doped La-K-Mn-O system [J].
Wu Jian ;
Zhang Shi-Yuan .
ACTA PHYSICA SINICA, 2007, 56 (02) :1127-1134
[32]   Effects of Zn substitution on the magnetic and transport properties of La0.6Sr0.4Mn1-yZnyO3-δ (0 ≤ y ≤ 0.3) [J].
Vijayanandhini, K. ;
Kutty, T. R. N. .
SOLID STATE COMMUNICATIONS, 2007, 141 (05) :252-257
[33]   Investigation on structural, electronic, magnetic and thermodynamic properties of antiperovskites Mn3XC (X = Al, Zn and Ga) [J].
Hoat, D. M. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2019, 33 (28)
[34]   Magnetic, electronic, and transport properties of the high-pressure-synthesized chiral magnets Mn1-xRhxGe [J].
Sidorov, V. A. ;
Petrova, A. E. ;
Chtchelkatchev, N. M. ;
Magnitskaya, M., V ;
Fomicheva, L. N. ;
Salamatin, D. A. ;
Nikolaev, A., V ;
Zibrov, I. P. ;
Wilhelm, F. ;
Rogalev, A. ;
Tsvyashchenko, A., V .
PHYSICAL REVIEW B, 2018, 98 (12)
[35]   Elasticity, slowness, thermal conductivity and the anisotropies in the Mn3Cu1-xGexN compounds [J].
Li, Guan-Nan ;
Chen, Zhi-Qian ;
Lu, Yu-Ming ;
Hu, Meng ;
Jiao, Li-Na ;
Zhao, Hao-Ting .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2018, 32 (07)
[36]   Pressure effect on magnetic and transport properties of Zn doped La0.91Mn0.95O3 manganite [J].
Markovich, V ;
Rozenberg, E ;
Gorodetsky, G ;
Mogilyansky, D ;
Revzin, B ;
Pelleg, J .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (05) :2347-2351
[37]   Transport and magnetic properties in La0.7Ca0.3Mn1-xCuxO3 [J].
Zhou, HD ;
Li, G ;
Xu, XY ;
Feng, SJ ;
Qian, T ;
Li, XG .
MATERIALS CHEMISTRY AND PHYSICS, 2002, 75 (1-3) :140-143
[38]   Structural, elastic, electronic and magnetic properties of Mn3ZnC and Mn3GeC [J].
Medkour, Y. ;
Roumili, A. ;
Louail, L. ;
Maouche, D. ;
Saoudi, A. .
COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2012, 991 :161-164
[39]   Effect of Substitutions of Zn for Mn on Size and Magnetic Properties of Mn–Zn Ferrite Nanoparticles [J].
A. Amirabadizadeh ;
H. Farsi ;
M. Dehghani ;
H. Arabi .
Journal of Superconductivity and Novel Magnetism, 2012, 25 :2763-2765
[40]   Electronic structure and magnetic properties of (Zn,Mn)Se with carriers doping studied by FLAPW method [J].
Matsushita, K ;
Harima, H ;
Yanase, A ;
Katayama-Yoshida, H .
PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON THE PHYSICS OF SEMICONDUCTORS, PTS I AND II, 2001, 87 :264-265