8-ranks of class groups of some imaginary quadratic number fields

被引:3
作者
Xi Mei Wu [1 ]
Qin Yue
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Peoples R China
[2] Chinese Acad Sci, Grad Sch, State Key Lab Informat Secur, Beijing 100039, Peoples R China
基金
中国国家自然科学基金;
关键词
class group; Redei matrix; reciprocity law;
D O I
10.1007/s10114-007-0965-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F = Q(root-p(1)p(2)) be an imaginary quadratic field with distinct primes p(1) = p(2) = 1 mod 8 and the Legendre symbol (p(1)/p(2)) = 1. Then the 8-rank of the class group of F is equal to 2 if and only if the following conditions hold: (1) The quartic residue symbols (p(1)/p(2))4 = (p(1)/p(2))4 = 1; (2) Either both p(1) and p(2) are represented by the form a(2) + 32b(2) over Z and p(2)(h+(2p1)/4) = x(2) - 2p(1)y(2), x, y is an element of Z, or both p(1) and p(2) are not represented by the form a(2) + 32b(2) over Z and p(2)(h+(2p1)/4) = epsilon(2x(2) - p(1)y(2)), x, y is an element of Z, epsilon is an element of {+/-1}, where h(+)(2p(1)) is the narrow class number of Q(root 2p(1)). Moreover, we also generalize these results.
引用
收藏
页码:2061 / 2068
页数:8
相关论文
共 14 条
[1]  
BARRUCAND P, 1969, J REINE ANGEW MATH, V238, P67
[2]  
Conner P. E., 1988, Ser. Pure Math., V8
[3]   Gauss sum of index 4: (1) cyclic case [J].
Feng, KQ ;
Yang, J ;
Luo, SX .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (06) :1425-1434
[4]  
Hecke Erich., 1981, Lectures on the Theory of Algebraic Numbers
[5]   On ideal class groups and units in terms of the quadratic form x2+32y2 [J].
Hurrelbrink, J ;
Yue, Q .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2005, 26 (02) :239-252
[6]  
IRELAND K, 1980, GTM 84
[7]   On a theorem of Scholz on the class number of quadratic fields [J].
Nemenzo, FR .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2004, 80 (02) :9-11
[8]  
Neukirch J., 1986, Class Field Theory, DOI DOI 10.1007/978-3-642-82465-4
[9]  
Rédei L, 1934, J REINE ANGEW MATH, V170, P69
[10]   Gauss sum of index 4: (2) non-cyclic case [J].
Yang, J ;
Luo, SX ;
Feng, KQ .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (03) :833-844