Beltrami operators in the plane

被引:111
作者
Astala, K [1 ]
Iwaniec, T
Saksman, E
机构
[1] Univ Jyvaskyla, Dept Math, FIN-00014 Jyvaskyla, Finland
[2] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[3] Univ Helsinki, Dept Math, FIN-00014 Helsinki, Finland
关键词
D O I
10.1215/S0012-7094-01-10713-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine optimal L-p-properties for the solutions of the general nonlinear elliptic system in the plane of the form f (z) over bar = H(z, f(z)), h is an element of L-p(C), where H is a measurable function satisfying \H(z, omega (1)) - H(z, omega (2))\ less than or equal to k\omega (1) - omega (2)\ and k is a constant k < 1. We also establish the precise invertibility and spectral properties in L-p(C) for the operators I - T<mu>, I - muT, and T - mu, where T is the Beurling transform. These operators are basic in the theory of quasi-conformal mappings and in linear and nonlinear elliptic partial differential equations (PDEs) in two dimensions. In particular we prove invertibility in L-p(C) whenever 1 + \\mu\\(infinity) < p < 1+1/\\mu\\(infinity). We also prove related results with applications to the regularity of weakly quasiconformal mappings.
引用
收藏
页码:27 / 56
页数:30
相关论文
共 34 条
[1]   CONFORMAL INVARIANTS AND FUNCTION-THEORETIC NULL-SETS [J].
AHLFORS, L ;
BEURLING, A .
ACTA MATHEMATICA, 1950, 83 (01) :101-129
[2]   RIEMANNS MAPPING THEOREM FOR VARIABLE METRICS [J].
AHLFORS, L ;
BERS, L .
ANNALS OF MATHEMATICS, 1960, 72 (02) :385-404
[3]  
[Anonymous], I NAZL ALTA MATEMATI
[4]  
[Anonymous], S MATH
[5]  
[Anonymous], 1993, NONLINEAR POTENTIAL
[6]   AREA DISTORTION OF QUASI-CONFORMAL MAPPINGS [J].
ASTALA, K .
ACTA MATHEMATICA, 1994, 173 (01) :37-60
[7]   Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transforms [J].
Banuelos, R ;
Wang, G .
DUKE MATHEMATICAL JOURNAL, 1995, 80 (03) :575-600
[8]  
BOJARSKI B, 1974, B ACAD POL SCI SMAP, V22, P473
[9]  
BOJARSKI B, 1974, B ACAD POL SCI SMAP, V22, P479
[10]  
Boyarski B. V., 1955, Dokl. Akad. Nauk SSSR, V102, P661