PEAK POSITIONS OF STRONGLY UNIMODAL SEQUENCES

被引:11
作者
Bringmann, Kathrin [1 ]
Jennings-Shaffer, Chris [1 ]
Mahlburg, Karl [2 ]
Rhoades, Robert [3 ]
机构
[1] Univ Cologne, Math Inst, Weyertal 86-90, D-50931 Cologne, Germany
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[3] Susquehanna Int Grp, Bala Cynwyd, PA 19004 USA
基金
欧洲研究理事会;
关键词
Strongly unimodal sequences; unimodal rank; partition rank; Wright's circle method; PARTITION CONGRUENCES; QUANTUM; RANK; CRANK; INEQUALITIES; ASYMPTOTICS; FORMULAS; CONCAVE; PARTS;
D O I
10.1090/tran/7791
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study combinatorial and asymptotic properties of the rank of strongly unimodal sequences. We find a generating function for the rank enumeration function and give a new combinatorial interpretation of the osptfunction introduced by Andrews, Chan, and Kim. We conjecture that the enumeration function for the number of unimodal sequences of a fixed size and varying rank is log-concave, and we prove an asymptotic result in support of this conjecture. Finally, we determine the asymptotic behavior of the rank for strongly unimodal sequences, and we prove that its values (when appropriately renormalized) are normally distributed with mean 0 in the asymptotic limit.
引用
收藏
页码:7087 / 7109
页数:23
相关论文
共 49 条
  • [1] Andrews G. E., 2009, RAMANUJANS LOST NO 2
  • [2] DYSONS CRANK OF A PARTITION
    ANDREWS, GE
    GARVAN, FG
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 18 (02) : 167 - 171
  • [3] PARTITIONS AND INDEFINITE QUADRATIC-FORMS
    ANDREWS, GE
    DYSON, FJ
    HICKERSON, D
    [J]. INVENTIONES MATHEMATICAE, 1988, 91 (03) : 391 - 407
  • [4] Concave and convex compositions
    Andrews, George E.
    [J]. RAMANUJAN JOURNAL, 2013, 31 (1-2) : 67 - 82
  • [5] The odd moments of ranks and cranks
    Andrews, George E.
    Chan, Song Heng
    Kim, Byungchan
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (01) : 77 - 91
  • [6] Andrews George E., 1999, ENCY MATH ITS APPL, V71
  • [7] [Anonymous], 1954, Proc. Lond. Math. Soc. III. Ser., DOI DOI 10.1112/PLMS/S3-4.1.84
  • [8] [Anonymous], 1998, THEORY PARTITIONS
  • [9] APOSTOL TM, 1990, GRADUATE TEXTS MATH, V41
  • [10] ON SOME NEW TYPES OF PARTITIONS ASSOCIATED WITH GENERALIZED FERRERS GRAPHS
    AULUCK, FC
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1951, 47 (04): : 679 - 686