Fabrication and property prediction of conductive and strain sensing TPU/CNT nanocomposite fibres

被引:135
作者
Bilotti, Emiliano [1 ,2 ]
Zhang, Rui [1 ,2 ]
Deng, Hua [1 ,2 ,3 ]
Baxendale, Mark [1 ,4 ]
Peijs, Ton [1 ,2 ,5 ]
机构
[1] Queen Mary Univ London, Ctr Mat Res, London E1 4NS, England
[2] Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, England
[3] Sichuan Univ, State Key Lab Polymer Mat Engn, Coll Polymer Sci & Engn, Chengdu 610065, Sichuan, Peoples R China
[4] Queen Mary Univ London, Dept Phys, London E1 4NS, England
[5] Eindhoven Univ Technol, Eindhoven Polymer Labs, NL-5600 MB Eindhoven, Netherlands
关键词
MULTIWALLED CARBON NANOTUBES; POLYMER NANOCOMPOSITES; NETWORK FORMATION; PERCOLATION; MELT; COMPOSITES; BLACK; DISPERSION; THRESHOLD; DYNAMICS;
D O I
10.1039/c0jm01827a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, thermoplastic polyurethane (TPU) fibres containing multi-walled carbon nanotubes (MWNTs) and fabricated via an extrusion process were demonstrated to possess a tuneable level of electrical conductivity. A simple approach based on the time-temperature superposition applied to the electrical conductivity of carbon nanotube (CNT) percolating in a thermoplastic polyurethane (TPU) melt was also developed to predict the conductivity of the nanocomposite fibres. The observation of Arrhenius dependence of zero-shear viscosity and the assumption of simple inverse proportionality between the variation of conductivity, due to network formation, and viscosity allow a universal plot of time variation of conductivity to be composed, which is able to predict the conductivity of the extruded fibres. The same TPU/CNT fibres were also demonstrated to possess good strain sensing abilities, which makes them good candidates for applications in smart textiles.
引用
收藏
页码:9449 / 9455
页数:7
相关论文
共 41 条
[1]   Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles [J].
Aliev, Ali E. ;
Oh, Jiyoung ;
Kozlov, Mikhail E. ;
Kuznetsov, Alexander A. ;
Fang, Shaoli ;
Fonseca, Alexandre F. ;
Ovalle, Raquel ;
Lima, Marcio D. ;
Haque, Mohammad H. ;
Gartstein, Yuri N. ;
Zhang, Mei ;
Zakhidov, Anvar A. ;
Baughman, Ray H. .
SCIENCE, 2009, 323 (5921) :1575-1578
[2]   Destruction and formation of a conductive carbon nanotube network in polymer melts:: In-line experiments [J].
Alig, Ingo ;
Lellinger, Dirk ;
Engel, Martin ;
Skipa, Tetyana ;
Poetschke, Petra .
POLYMER, 2008, 49 (07) :1902-1909
[3]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[4]  
Bicerano J, 1999, J MACROMOL SCI R M C, VC39, P561
[5]   Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites [J].
Bryning, MB ;
Islam, MF ;
Kikkawa, JM ;
Yodh, AG .
ADVANCED MATERIALS, 2005, 17 (09) :1186-+
[6]   Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing [J].
Cipriano, Bani H. ;
Kota, Arun K. ;
Gershon, Alan L. ;
Laskowski, Conrad J. ;
Kashiwagi, Takashi ;
Bruck, Hugh A. ;
Raghavan, Srinivasa R. .
POLYMER, 2008, 49 (22) :4846-4851
[7]   Carbon-Nanotube-Polymer Nanocomposites for Field-Emission Cathodes [J].
Connolly, Thomas ;
Smith, Richard C. ;
Hernandez, Yenny ;
Gun'ko, Yurii ;
Coleman, Jonathan N. ;
Carey, J. David .
SMALL, 2009, 5 (07) :826-831
[8]   Conductive Polymer Tape Containing Highly Oriented Carbon Nanofillers [J].
Deng, H. ;
Zhang, R. ;
Bilotti, E. ;
Loos, J. ;
Peijs, T. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2009, 113 (02) :742-751
[9]   Preparation of High-Performance Conductive Polymer Fibers through Morphological Control of Networks Formed by Nanofillers [J].
Deng, Hua ;
Skipa, Tetyana ;
Bilotti, Emiliano ;
Zhang, Rui ;
Lellinger, Dirk ;
Mezzo, Luca ;
Fu, Qiang ;
Alig, Ingo ;
Peijs, Ton .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (09) :1424-1432
[10]   Effect of thermal annealing on the electrical conductivity of high-strength bicomponent polymer tapes containing carbon nanofillers [J].
Deng, Hua ;
Bilotti, Emiliano ;
Zhang, Rui ;
Loos, Joachim ;
Peijs, Ton .
SYNTHETIC METALS, 2010, 160 (5-6) :337-344