Singular integrals in the rational Dunkl setting

被引:8
作者
Dziubanski, Jacek [1 ]
Hejna, Agnieszka [1 ]
机构
[1] Uniwersytet Wroclawski, Inst Matemat, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
来源
REVISTA MATEMATICA COMPLUTENSE | 2022年 / 35卷 / 03期
关键词
Dunkl convolutions; Dunkl transforms; Singular integrals; Maximal functions; OPERATORS; POLYNOMIALS; TRANSFORM;
D O I
10.1007/s13163-021-00402-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On R-N equipped with a normalized root system R and amultiplicity function k >= 0 let us consider a (not necessarily radial) kernel K(x) satisfying vertical bar partial derivative K-beta(x)vertical bar less than or similar to parallel to x parallel to(-N-vertical bar beta vertical bar) for vertical bar beta vertical bar <= s, where N is the homogeneous dimension of the system (R-N, R, k). We additionally assume that sup(0<a<b<infinity) vertical bar integral(a<parallel to x parallel to<b) K(x)dw(x)vertical bar < infinity, where dw is the associated measure. We prove that if s large enough then a singular integral Dunkl convolution operator associated with the kernel K(x) is bounded on L-p(dw) for 1 < p < infinity and of weak-type (1,1). Furthermore, we study a maximal function related to the Dunkl convolutions with truncation of K.
引用
收藏
页码:711 / 737
页数:27
相关论文
共 24 条
[1]  
Amri B, 2012, J LIE THEORY, V22, P723
[2]  
Anker JP, 2019, J FOURIER ANAL APPL, V25, P2356, DOI 10.1007/s00041-019-09666-0
[3]   THE DUNKL TRANSFORM [J].
DEJEU, MFE .
INVENTIONES MATHEMATICAE, 1993, 113 (01) :147-162
[4]  
Dunkl C. F., 1992, CONTEMP MATH, V138, P123, DOI [10.1090/conm/138/1199124, DOI 10.1090/CONM/138/1199124]
[6]   INTEGRAL-KERNELS WITH REFLECTION GROUP INVARIANCE [J].
DUNKL, CF .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1991, 43 (06) :1213-1227
[7]   REFLECTION GROUPS AND ORTHOGONAL POLYNOMIALS ON THE SPHERE [J].
DUNKL, CF .
MATHEMATISCHE ZEITSCHRIFT, 1988, 197 (01) :33-60
[8]  
Duoandikoetxea J., 2001, GRADUATE STUDIES MAT, V29, DOI [10.1090/gsm/029, DOI 10.1090/GSM/029]
[9]   Remark on atomic decompositions for the Hardy space H1 in the rational Dunkl setting [J].
Dziubanski, Jacek ;
Hejna, Agnieszka .
STUDIA MATHEMATICA, 2020, 251 (01) :89-110
[10]   Hormander's multiplier theorem for the Dunkl transform [J].
Dziubanski, Jacek ;
Hejna, Agnieszka .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (07) :2133-2159