Digital image inpainting based on P-harmonic energy minimization

被引:0
|
作者
Zhang Hongying [1 ]
Wu Bin
Peng Qicong
Wu Yadong
机构
[1] SW Univ Sci & Technol, Sch Informat Engn, Mianyang 621010, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Commun & Informat Engn, Chengdu 610054, Peoples R China
[3] SW Univ Sci & Technol, Sch Comp Sci & Engn, Mianyang 621010, Peoples R China
来源
CHINESE JOURNAL OF ELECTRONICS | 2007年 / 16卷 / 03期
关键词
image inpainting; nonlinear diffusion; p-harmonic equation; total variation model; variational method; partial differential equation (PDE);
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses the problem of image inpainting with variational PDE methods. From the study of existing formalisms, two variational inpainting models based on p-harmonic energy minimization are proposed. The associated Euler-Lagrange equations lead to pharmonic equations. The paper analyzes the physical characteristics of the p-Harmonic equations in local coordinates and explains that diffusion behavioral of p-harmonic is superior to that of total variation model in essence. Then proper numerical schemes are designed to handle their computation. They are finally applied to a wide variety of image processing problems, including color image restoration, inpainting and zooming. All these results show that the proposed models are effective.
引用
收藏
页码:525 / 530
页数:6
相关论文
共 50 条
  • [41] A REMARK ON P-HARMONIC MAPS
    NAKAUCHI, N
    TAKAKUWA, S
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 25 (02) : 169 - 185
  • [42] MAXIMUM PRINCIPLE AND COMPARISON PRINCIPLE OF p-HARMONIC FUNCTIONS VIA p-HARMONIC BOUNDARY OF GRAPHS
    Lee, Yong Hah
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (06) : 1241 - 1250
  • [43] ON p-HARMONIC MAPS INTO SPHERES
    Dragomir, Sorin
    Tommasoli, Andrea
    TSUKUBA JOURNAL OF MATHEMATICS, 2011, 35 (02) : 161 - 167
  • [44] p-energy and p-harmonic functions on Sierpinski gasket type fractals
    Herman, PE
    Peirone, R
    Strichartz, RS
    POTENTIAL ANALYSIS, 2004, 20 (02) : 125 - 148
  • [45] p-Energy and p-Harmonic Functions on Sierpinski Gasket Type Fractals
    P. Edward Herman
    Roberto Peirone
    Robert S. Strichartz
    Potential Analysis, 2004, 20 : 125 - 148
  • [46] Normality of the p-Harmonic and Log-p-Harmonic Mappings
    Jiang, Qinghua
    Meng, Fanning
    Dang, Guoqiang
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [47] LIOUVILLE PROPERTIES FOR p-HARMONIC MAPS WITH FINITE q-ENERGY
    Chang, Shu-Cheng
    Chen, Jui-Tang
    Wei, Shihshu Walter
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (02) : 787 - 825
  • [48] On the p-harmonic and p-biharmonic maps
    Mohammed Cherif A.
    Journal of Geometry, 2018, 109 (3)
  • [49] SOME CONFORMAL PROPERTIES OF P-HARMONIC MAPS AND A REGULARITY FOR SPHERE-VALUED P-HARMONIC MAPS
    TAKEUCHI, H
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1994, 46 (02) : 217 - 234
  • [50] On the dimension of p-harmonic measure in space
    Lewis, John L.
    Nystrom, Kaj
    Vogel, Andrew
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (06) : 2197 - 2256