Microstructure and high temperature strength of SiCW/SiC composites by chemical vapor infiltration

被引:19
作者
Hua, Yunfeng [1 ,2 ]
Zhang, Litong [1 ]
Cheng, Laifei [1 ]
Li, Zhengxian [2 ]
Du, Jihong [2 ]
机构
[1] NW Polytech Univ, Natl Key Lab Thermostruct Composite Mat, Xian 710072, Peoples R China
[2] NW Inst Nonferrous Met Res, Xian 710072, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2010年 / 527卷 / 21-22期
关键词
Electron microscopy; Ceramics; Composites; Fracture; Interfaces; Chemical vapor infiltration (CVI); SINTERED SILICON-CARBIDE; SIC-BASED CERAMICS; MECHANICAL-PROPERTIES; ALUMINUM NITRIDE; PHASE; ALN; RESISTANCE; TOUGHNESS; CREEP; OXIDE;
D O I
10.1016/j.msea.2010.05.042
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
SiCW/SiC composites without an intergranular glassy phase are prepared by the CVI process. The microstructure and high temperature strength of SiCW/SiC composites are investigated. The high temperature strength of SiCW/SiC composites depends on the interfacial bonding strength between matrix and whiskers. The matrix is effectively strengthened and toughened by the whiskers, and SiCW/SiC composites show a constant strength of 475 +/- 32 MPa below 1000 degrees C. The flexural strength gradually declines from 475 +/- 32 MPa to 208 +/- 15 MPa at the temperature from 1000 degrees C to 1500 degrees C due to the decreased whisker-matrix interfacial bonding strength. The interfacial bonding strength is too low to transfer stress from the matrix to the whiskers, and SiCW/SiC composites show a constant strength of 208 +/- 15 MPa at temperatures from 1500 degrees C to 1800 degrees C. The fracture mode of SiCW/SiC composites changes from the toughened fracture below 1000 degrees C to the brittle fracture above 1000 degrees C. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:5592 / 5595
页数:4
相关论文
共 21 条
[11]  
Kim YW, 2001, J AM CERAM SOC, V84, P2060
[12]   Effect of grain boundary segregation on high-temperature strength of hot-pressed silicon carbide [J].
Kinoshita, T ;
Munekawa, S ;
Tanaka, SI .
ACTA MATERIALIA, 1997, 45 (02) :801-809
[13]   Polymer-ceramic conversion of a highly branched liquid polycarbosilane for SiC-based ceramics [J].
Li, Houbu ;
Zhang, Litong ;
Cheng, Laifei ;
Wang, Yiguang ;
Yu, Zhaoju ;
Huang, Muhe ;
Tu, Huibin ;
Xia, Haiping .
JOURNAL OF MATERIALS SCIENCE, 2008, 43 (08) :2806-2811
[14]  
Lillo TM, 2003, CERAM ENG SCI PROC, V24, P359
[15]   Properties of liquid phase pressureless sintered silicon carbide obtained without sintering bed [J].
Magnani, G ;
Beaulardi, L ;
Pilotti, L .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2005, 25 (09) :1619-1627
[16]   Pressureless sintering and properties of αSiC-B4C composite [J].
Magnani, G ;
Beltrami, G ;
Minoccari, GL ;
Pilotti, L .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2001, 21 (05) :633-638
[17]   Flexural strength and toughness of liquid phase sintered silicon carbide [J].
Magnani, G ;
Minoccari, GL ;
Pilotti, L .
CERAMICS INTERNATIONAL, 2000, 26 (05) :495-500
[18]   Sintering, high temperature strength and oxidation resistance of liquid-phase-pressureless-sintered SiC-AlN ceramics with addition of rare-earth oxides [J].
Magnani, Giuseppe ;
Antolini, Francesco ;
Beaulardi, Leandro ;
Burresi, Emiliano ;
Coglitore, Antonino ;
Mingazzini, Claudio .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2009, 29 (11) :2411-2417
[19]   SiC-AlN particulate composite [J].
Pan, YB ;
Qiu, JH ;
Kawagoe, M ;
Morita, M ;
Tan, SH ;
Jiang, DL .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1999, 19 (09) :1789-1793
[20]   Processing, microstructure and properties of in-situ reinforced SiC matrix composites [J].
Tani, T .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 1999, 30 (04) :419-423