HyperspherE: An Embedding Method for Knowledge Graph Completion Based on Hypersphere

被引:3
|
作者
Dong, Yao [1 ]
Guo, Xiaobo [1 ,2 ]
Xiang, Ji [1 ]
Liu, Kai [1 ]
Tang, Zhihao [1 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
关键词
Knowledge graph embedding; Hypersphere; Link prediction; Instance; Concept; IsA relations;
D O I
10.1007/978-3-030-82136-4_42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge graph completion (KGC) aims to predict missing facts by mining information already present in a knowledge graph (KG). A general solution for KGC task is embedding facts in KG into a low-dimensional vector space. Recently, several embedding models focus on modeling isA relations (i.e., instanceOf and subclassOf), and produce some state-of-the-art performance. However, most of them encode instances as vectors for simplification, which neglects the uncertainty of instances. In this paper, we present a new knowledge graph completion model called HyperspherE to alleviate this problem. Specifically, HyperspherE encodes both instances and concepts as hyperspheres. Relations between instances are encoded as vectors in the same vector space. Afterwards, HyperspherE formulates isA relations by the relative positions between hyperspheres. Experimental results on dataset YAGO39K empirically show that HyperspherE outperforms some existing state-of-the-art baselines, and demonstrate the effectiveness of the penalty term in score function.
引用
收藏
页码:517 / 528
页数:12
相关论文
共 50 条
  • [41] Centralized embedding hypersphere feature learning for person re-identification
    Wang, Yuanyuan
    Wang, Zhijian
    Jiang, Mingxin
    IMAGING SCIENCE JOURNAL, 2019, 67 (06): : 295 - 304
  • [42] HYPERSPHERE MAPPER - A NONLINEAR-PROGRAMMING APPROACH TO THE HYPERCUBE EMBEDDING PROBLEM
    ANTONIO, JK
    METZGER, RC
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1993, 19 (03) : 262 - 270
  • [43] A Novel Asymmetric Embedding Model for Knowledge Graph Completion
    Geng, Zhiqiang
    Li, Zhongkun
    Han, Yongming
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 290 - 295
  • [44] An Improvement of Diachronic Embedding for Temporal Knowledge Graph Completion
    Thuy-Anh Nguyen Thi
    Viet-Phuong Ta
    Xuan Hieu Phan
    Quang Thuy Ha
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2023, PT II, 2023, 13996 : 111 - 120
  • [45] Specific Time Embedding for Temporal Knowledge Graph Completion
    Ni, Runyu
    Ma, Zhonggui
    Yu, Kaihang
    Xu, Xiaohan
    PROCEEDINGS OF 2020 IEEE 19TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC 2020), 2020, : 105 - 110
  • [46] ProjR: Embedding Structure Diversity for Knowledge Graph Completion
    Zhang, Wen
    Li, Juan
    Chen, Huajun
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, PT I, 2018, 11108 : 145 - 157
  • [47] An Embedding Model for Knowledge Graph Completion Based on Graph Sub-Hop Convolutional Network
    He, Haitao
    Niu, Haoran
    Feng, Jianzhou
    Nie, Junlan
    Zhang, Yangsen
    Ren, Jiadong
    BIG DATA RESEARCH, 2022, 30
  • [48] Shrinking hypersphere based trajectory of particles in PSO
    Yadav, Anupam
    Deep, Kusum
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 : 246 - 267
  • [49] Dynamic Embedding Graph Attention Networks for Temporal Knowledge Graph Completion
    Wang, Jingqi
    Zhu, Cui
    Zhu, Wenjun
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2022, 13368 : 722 - 734
  • [50] SeAttE: An Embedding Model Based on Separating Attribute Space for Knowledge Graph Completion
    Liang, Zongwei
    Yang, Junan
    Liu, Hui
    Huang, Keju
    Qu, Lingzhi
    Cui, Lin
    Li, Xiang
    ELECTRONICS, 2022, 11 (07)