Mean-field- and classical limit of many-body Schrodinger dynamics for bosons

被引:62
作者
Froehlich, Jierg [1 ]
Graffi, Sandro
Schwarz, Simon
机构
[1] ETH, Theoret Phys, Zurich, Switzerland
[2] Univ Bologna, Dipartmento Matemat, Bologna, Italy
关键词
D O I
10.1007/s00220-007-0207-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a new proof of the convergence of the N-particle Schrodinger dynamics for bosons towards the dynamics generated by the Hartree equation in the mean-field limit. For a restricted class of two-body interactions, we obtain convergence estimates uniform in h, up to an exponentially small remainder. For h = 0, the classical dynamics in the mean-field limit is given by the Vlasov equation.
引用
收藏
页码:681 / 697
页数:17
相关论文
共 16 条
[1]   Normal forms and quantization formulae [J].
Bambusi, D ;
Graffi, S ;
Paul, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 207 (01) :173-195
[2]   Derivation of the Schrodinger-Poisson equation from the quantum N-body problem [J].
Bardos, C ;
Erdös, L ;
Golse, F ;
Mauser, N ;
Yau, HT .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (06) :515-520
[3]  
Bardos C., 2000, METHODS APPL ANAL, V7, P275, DOI [DOI 10.4310/MAA.2000.V7.N2.A2), DOI 10.4310/MAA.2000.V7.N2.A2]
[4]   VLASOV DYNAMICS AND ITS FLUCTUATIONS IN 1-N LIMIT OF INTERACTING CLASSICAL PARTICLES [J].
BRAUN, W ;
HEPP, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 56 (02) :101-113
[5]  
Dobrushin R.L., 1979, Funkts. Anal. Pril, V13, P48, DOI [10.1007/BF01077243, DOI 10.1007/BF01077243]
[6]   Nonlinear Hartree equation as the mean field limit of weakly coupled fermions [J].
Elgart, A ;
Erdös, L ;
Schlein, B ;
Yau, HT .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (10) :1241-1273
[7]  
Erdos L., 2001, Adv. Theor. Math. Phys., V5, P1169
[8]  
Folland G. B., 1989, HARMONIC ANAL PHASE
[9]   CLASS OF NON-LINEAR SCHRODINGER-EQUATIONS WITH NON LOCAL INTERACTION [J].
GINIBRE, J ;
VELO, G .
MATHEMATISCHE ZEITSCHRIFT, 1980, 170 (02) :109-136
[10]   Mean-field approximation of quantum systems and classical limit [J].
Graffi, S ;
Martinez, A ;
Pulvirenti, M .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (01) :59-73