AI MSK clinical applications: spine imaging

被引:11
作者
Huber, Florian A. [1 ]
Guggenberger, Roman [1 ]
机构
[1] Univ Hosp Zurich, Inst Diagnost & Intervent Radiol, Raemistr 100, CH-8091 Zurich, Switzerland
关键词
Artificial intelligence; Spine; ARTIFICIAL-INTELLIGENCE; TEXTURE ANALYSIS; NEURAL-NETWORKS; SEGMENTATION; CLASSIFICATION;
D O I
10.1007/s00256-021-03862-0
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Recent investigations have focused on the clinical application of artificial intelligence (AI) for tasks specifically addressing the musculoskeletal imaging routine. Several AI applications have been dedicated to optimizing the radiology value chain in spine imaging, independent from modality or specific application. This review aims to summarize the status quo and future perspective regarding utilization of AI for spine imaging. First, the basics of AI concepts are clarified. Second, the different tasks and use cases for AI applications in spine imaging are discussed and illustrated by examples. Finally, the authors of this review present their personal perception of AI in daily imaging and discuss future chances and challenges that come along with AI-based solutions.
引用
收藏
页码:279 / 291
页数:13
相关论文
共 70 条
[1]   Review on the Use of Artificial Intelligence in Spinal Diseases [J].
Azimi, Parisa ;
Yazdanian, Taravat ;
Benzel, Edward C. ;
Aghaei, Hossein Nayeb ;
Azhari, Shirzad ;
Sadeghi, Sohrab ;
Montazeri, Ali .
ASIAN SPINE JOURNAL, 2020, 14 (04) :543-571
[2]   Segmentation of Peripheral Nerves From Magnetic Resonance Neurography: A Fully-Automatic, Deep Learning-Based Approach [J].
Balsiger, Fabian ;
Steindel, Carolin ;
Arn, Mirjam ;
Wagner, Benedikt ;
Grunder, Lorenz ;
El-Koussy, Marwan ;
Valenzuela, Waldo ;
Reyes, Mauricio ;
Scheidegger, Olivier .
FRONTIERS IN NEUROLOGY, 2018, 9
[3]   State-of-the-art review on deep learning in medical imaging [J].
Biswas, Mainak ;
Kuppili, Venkatanareshbabu ;
Saba, Luca ;
Edla, Damodar Reddy ;
Suri, Harman S. ;
Cuadrado-Godia, Elisa ;
Laird, John R. ;
Marinhoe, Rui Tato ;
Sanches, Joao M. ;
Nicolaides, Andrew ;
Suri, Jasjit S. .
FRONTIERS IN BIOSCIENCE-LANDMARK, 2019, 24 :392-426
[4]   Effectiveness of Clinical Decision Support in Controlling Inappropriate Imaging [J].
Blackmore, C. Craig ;
Mecklenburg, Robert S. ;
Kaplan, Gary S. .
JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2011, 8 (01) :19-25
[5]   Privacy in Neural Network Learning: Threats and Countermeasures [J].
Chang, Shan ;
Li, Chao .
IEEE NETWORK, 2018, 32 (04) :61-67
[6]   Self-supervised learning for medical image analysis using image context restoration [J].
Chen, Liang ;
Bentley, Paul ;
Mori, Kensaku ;
Misawa, Kazunari ;
Fujiwara, Michitaka ;
Rueckert, Daniel .
MEDICAL IMAGE ANALYSIS, 2019, 58
[7]   Deep convolutional neural network-based segmentation and classification of difficult to define metastatic spinal lesions in 3D CT data [J].
Chmelik, Jiri ;
Jakubicek, Roman ;
Walek, Petr ;
Jan, Jiri ;
Ourednicek, Petr ;
Lambert, Lukas ;
Amadori, Elena ;
Gavelli, Giampaolo .
MEDICAL IMAGE ANALYSIS, 2018, 49 :76-88
[8]   Quantification in Musculoskeletal Imaging Using Computational Analysis and Machine Learning: Segmentation and Radiomics [J].
Cuadra, Meritxell Bach ;
Favre, Julien ;
Omoumi, Patrick .
SEMINARS IN MUSCULOSKELETAL RADIOLOGY, 2020, 24 (01) :50-64
[9]   Radiology's Value Chain [J].
Enzmann, Dieter R. .
RADIOLOGY, 2012, 263 (01) :243-252
[10]   ESR paper on structured reporting in radiology [J].
Neri E. ;
Brady A.P. ;
Gibaud B. ;
Visser J.J. ;
Goldberg S.N. ;
Pyatigorskaya N. .
INSIGHTS INTO IMAGING, 2018, 9 (01) :1-7