Scattering for the two-dimensional NLS with exponential nonlinearity

被引:19
作者
Ibrahim, S. [1 ]
Majdoub, M. [2 ]
Masmoudi, N. [3 ]
Nakanishi, K. [4 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8P 5C3, Canada
[2] Univ Tunis El Manar, Dept Math, Fac Sci Tunis, Tunis, Tunisia
[3] NYU, Courant Inst, New York, NY 10012 USA
[4] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
基金
加拿大自然科学与工程研究理事会;
关键词
SCHRODINGER-EQUATION; KLEIN-GORDON; ENERGY SPACE; INEQUALITY; POSEDNESS;
D O I
10.1088/0951-7715/25/6/1843
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate existence and asymptotic completeness of the wave operators for nonlinear Schrodinger equations with a defocusing exponential nonlinearity in two space dimensions. A certain threshold is defined based on the value of the conserved Hamiltonian, below which the exponential potential energy is dominated by the kinetic energy via a Trudinger-Moser type inequality. We prove that if the Hamiltonian is below the critical value, then the solution approaches a free Schrodinger solution at the time infinity.
引用
收藏
页码:1843 / 1849
页数:7
相关论文
共 21 条
[11]  
Ibrahim S, 2007, P AM MATH SOC, V135, P87
[12]   Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type nonlinearity [J].
Ibrahim, Slim ;
Majdoub, Mohamed ;
Masmoudi, Nader .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (11) :1639-1658
[13]   WELL- AND ILL-POSEDNESS ISSUES FOR ENERGY SUPERCRITICAL WAVES [J].
Ibrahim, Slim ;
Majdoub, Mohamed ;
Masmoudi, Nader .
ANALYSIS & PDE, 2011, 4 (02) :341-367
[14]   SCATTERING FOR THE TWO-DIMENSIONAL ENERGY-CRITICAL WAVE EQUATION [J].
Ibrahim, Slim ;
Majdoub, Mohamed ;
Masmoudi, Nader ;
Nakanishi, Kenji .
DUKE MATHEMATICAL JOURNAL, 2009, 150 (02) :287-329
[15]   SELF-TRAPPED LASER-BEAMS IN PLASMA [J].
LAM, JF ;
LIPPMANN, B .
PHYSICS OF FLUIDS, 1977, 20 (07) :1176-1179
[16]   Nonlinear Schrodinger equations in the Sobolev space of critical order [J].
Nakamura, M ;
Ozawa, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 155 (02) :364-380
[17]   Energy scattering for nonlinear Klein-Gordon and Schrodinger equations in spatial dimensions 1 and 2 [J].
Nakanishi, K .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 169 (01) :201-225
[18]  
Planchon F, 2009, ANN SCI ECOLE NORM S, V42, P261
[19]   A sharp Trudinger-Moser type inequality for unbounded domains in R2 [J].
Ruf, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 219 (02) :340-367
[20]  
Struwe M, 2012, CRITICAL NONLINEAR W