Scattering for the two-dimensional NLS with exponential nonlinearity

被引:19
作者
Ibrahim, S. [1 ]
Majdoub, M. [2 ]
Masmoudi, N. [3 ]
Nakanishi, K. [4 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8P 5C3, Canada
[2] Univ Tunis El Manar, Dept Math, Fac Sci Tunis, Tunis, Tunisia
[3] NYU, Courant Inst, New York, NY 10012 USA
[4] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
基金
加拿大自然科学与工程研究理事会;
关键词
SCHRODINGER-EQUATION; KLEIN-GORDON; ENERGY SPACE; INEQUALITY; POSEDNESS;
D O I
10.1088/0951-7715/25/6/1843
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate existence and asymptotic completeness of the wave operators for nonlinear Schrodinger equations with a defocusing exponential nonlinearity in two space dimensions. A certain threshold is defined based on the value of the conserved Hamiltonian, below which the exponential potential energy is dominated by the kinetic energy via a Trudinger-Moser type inequality. We prove that if the Hamiltonian is below the critical value, then the solution approaches a free Schrodinger solution at the time infinity.
引用
收藏
页码:1843 / 1849
页数:7
相关论文
共 21 条
[1]   Trudinger type inequalities in RN and their best exponents [J].
Adachi, S ;
Tanaka, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (07) :2051-2057
[2]   Scattering in the energy space and below for 3D NLS [J].
Bourgain, J .
JOURNAL D ANALYSE MATHEMATIQUE, 1998, 75 (1) :267-297
[3]   Global wellposedness of defocusing critical nonlinear Schrodinger equation in the radial case [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :145-171
[4]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[6]  
Cazenave T, 2003, Semilinear Schrodinger Equations
[7]   ENERGY CRITICAL NLS IN TWO SPACE DIMENSIONS [J].
Colliander, J. ;
Ibrahim, S. ;
Majdoub, M. ;
Masmoudi, N. .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2009, 6 (03) :549-575
[8]   Tensor Products and Correlation Estimates with Applications to Nonlinear Schrodinger Equations [J].
Colliander, J. ;
Grillakis, M. ;
Tzirakis, N. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (07) :920-968
[9]   Global well-posedness and scattering for the energy-critical nonlinear Schrodinger equation in R3 [J].
Colliander, J. ;
Keel, M. ;
Staffilani, G. ;
Takaoka, H. ;
Tao, T. .
ANNALS OF MATHEMATICS, 2008, 167 (03) :767-865
[10]  
GINIBRE J, 1985, J MATH PURE APPL, V64, P363