Solving the backward problem for space-fractional diffusion equation by a fractional Tikhonov regularization method

被引:18
作者
Zheng, Guang-Hui [1 ]
Zhang, Quan-Guo [2 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[2] Luoyang Normal Univ, Dept Math, Luoyang 471022, Henan, Peoples R China
关键词
Backward problem; Fractional Tikhonov regularization method; Fractional Laplacian; Convergence rate estimate; a posteriori parameter choice; DECOMPOSITION METHOD; ANOMALOUS DIFFUSION; STABILITY;
D O I
10.1016/j.matcom.2017.12.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we consider the backward problem for diffusion equation with space-fractional Laplacian. In order to overcome the ill-posedness of the backward problem, we propose a fractional Tikhonov regularization method to solve it. Based on the conditional stability estimate and an a posteriori regularization parameter choice rule, the convergence rate estimate is presented under a-priori bound assumption for the exact solution. Finally, several numerical examples are given to show that the proposed numerical methods are effective. (C) 2017 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 47
页数:11
相关论文
共 39 条
[1]  
[Anonymous], 1999, FRACTIONAL DIFFERENT, DOI DOI 10.1016/S0076-5392(99)X8001-5
[2]   The fractional-order governing equation of Levy motion [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1413-1423
[3]   Application of a fractional advection-dispersion equation [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1403-1412
[4]  
Biagini F, 2008, PROBAB APPL SER, P1
[5]   Transport equation describing fractional Levy motion of suprathermal ions in TORPEX [J].
Bovet, A. ;
Gamarino, M. ;
Furno, I. ;
Ricci, P. ;
Fasoli, A. ;
Gustafson, K. ;
Newman, D. E. ;
Sanchez, R. .
NUCLEAR FUSION, 2014, 54 (10)
[6]   A regularization for a Riesz-Feller space-fractional backward diffusion problem [J].
Cheng, Hao ;
Fu, Chu-Li ;
Zheng, Guang-Hui ;
Gao, Jie .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2014, 22 (06) :860-872
[7]  
Chung K. L., 1995, GREEN BROWN PROBABIL, P106
[8]  
Das S, 2012, SPRINGERBR APPL SCI, P1, DOI 10.1007/978-3-642-23117-9
[9]   Fractional (space-time) diffusion equation on comb-like model [J].
Elwakil, SA ;
Zahran, MA ;
Abulwafa, EM .
CHAOS SOLITONS & FRACTALS, 2004, 20 (05) :1113-1120
[10]  
Engl H. W., 1996, MATH APPL, V375, P321