Discrete-time realization of transcendental impedance models, with application to modeling spherical solid diffusion

被引:54
作者
Lee, James L. [1 ]
Chemistruck, Andrew [2 ]
Plett, Gregory L. [1 ]
机构
[1] Univ Colorado, Dept Elect & Comp Engn, Colorado Springs, CO 80918 USA
[2] Texas Instruments Inc, Santa Clara, CA 95091 USA
关键词
Spherical solid diffusion; Battery modeling; Model order reduction; Transcendental impedance model; Transcendental transfer function; MODAL PARAMETER-IDENTIFICATION; ALGORITHM; NOISE;
D O I
10.1016/j.jpowsour.2012.01.134
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper introduces the "discrete-time realization algorithm" (DRA) as a method to find a reduced-order, discrete-time realization of an infinite-order distributed-parameter system such as a transcendental impedance function. In contrast to other methods, the DRA is a bounded-time deterministic method that produces globally optimal reduced-order models. In the DRA we use the sample and hold framework along with the inverse discrete Fourier transform to closely approximate the discrete-time impulse response. Next, the Ho-Kalman algorithm is used to produce a state-space realization from this discrete-time impulse response. Two examples are presented to demonstrate the DRA using low-order rational-polynomial transfer functions, where the DRA solution can be compared to known solutions. A third example demonstrates the DRA with a transcendental impedance function model of lithium diffusion in the solid phase of a lithium-ion battery, showing that a third-order discrete-time model can closely approximate this infinite-order model behavior. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:367 / 377
页数:11
相关论文
共 29 条
[21]   Study of Time-Domain Techniques for Modal Parameter Identification of a Long Suspension Bridge with Dense Sensor Arrays [J].
Nayeri, Reza D. ;
Tasbihgoo, Farzad ;
Wahbeh, Mazen ;
Caffrey, John P. ;
Masri, Sami F. ;
Conte, Joel P. ;
Elgamal, Ahmed .
JOURNAL OF ENGINEERING MECHANICS, 2009, 135 (07) :669-683
[22]   Stochastic system identification for operational modal analysis: A review [J].
Peeters, B ;
De Roeck, G .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2001, 123 (04) :659-667
[23]  
Skogestad S., 2005, Multivariable Feedback Control: Analysis and Design
[24]   Control oriented ID electrochemical model of lithium ion battery [J].
Smith, Kandler A. ;
Rahn, Christopher D. ;
Wang, Chao-Yang .
ENERGY CONVERSION AND MANAGEMENT, 2007, 48 (09) :2565-2578
[25]   Model order reduction of 1D diffusion systems via residue grouping [J].
Smith, Kandler A. ;
Rahn, Christopher D. ;
Wang, Chao-Yang .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2008, 130 (01) :0110121-0110128
[26]   On the applicability of the Ho-Kalman minimal realization theory [J].
Spadavecchia, Roberto ;
De Stefano, Alessandro ;
Sabia, Donato .
DAMAGE ASSESSMENT OF STRUCTURES VII, 2007, 347 :133-+
[27]  
Strang, 2009, Introduction to Linear Algebra
[28]   Efficient macro-micro scale coupled modeling of batteries [J].
Subramanian, VR ;
Diwakar, VD ;
Tapriyal, D .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (10) :A2002-A2008