Discrete-time realization of transcendental impedance models, with application to modeling spherical solid diffusion

被引:54
作者
Lee, James L. [1 ]
Chemistruck, Andrew [2 ]
Plett, Gregory L. [1 ]
机构
[1] Univ Colorado, Dept Elect & Comp Engn, Colorado Springs, CO 80918 USA
[2] Texas Instruments Inc, Santa Clara, CA 95091 USA
关键词
Spherical solid diffusion; Battery modeling; Model order reduction; Transcendental impedance model; Transcendental transfer function; MODAL PARAMETER-IDENTIFICATION; ALGORITHM; NOISE;
D O I
10.1016/j.jpowsour.2012.01.134
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper introduces the "discrete-time realization algorithm" (DRA) as a method to find a reduced-order, discrete-time realization of an infinite-order distributed-parameter system such as a transcendental impedance function. In contrast to other methods, the DRA is a bounded-time deterministic method that produces globally optimal reduced-order models. In the DRA we use the sample and hold framework along with the inverse discrete Fourier transform to closely approximate the discrete-time impulse response. Next, the Ho-Kalman algorithm is used to produce a state-space realization from this discrete-time impulse response. Two examples are presented to demonstrate the DRA using low-order rational-polynomial transfer functions, where the DRA solution can be compared to known solutions. A third example demonstrates the DRA with a transcendental impedance function model of lithium diffusion in the solid phase of a lithium-ion battery, showing that a third-order discrete-time model can closely approximate this infinite-order model behavior. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:367 / 377
页数:11
相关论文
共 29 条
[11]   DISTRIBUTED SYSTEM SIMULATION USING INFINITE PRODUCT EXPANSIONS [J].
GOODSON, RE .
SIMULATION, 1970, 15 (06) :255-&
[12]  
Ho B., 1966, Regelungstechnik, V14, P545, DOI DOI 10.1524/AUTO.1966.14.112.545
[13]   DIFFUSION IMPEDANCE IN PLANAR, CYLINDRICAL AND SPHERICAL-SYMMETRY [J].
JACOBSEN, T ;
WEST, K .
ELECTROCHIMICA ACTA, 1995, 40 (02) :255-262
[14]   EFFECTS OF NOISE ON MODAL PARAMETERS IDENTIFIED BY THE EIGENSYSTEM REALIZATION-ALGORITHM [J].
JUANG, JN ;
PAPPA, RS .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1986, 9 (03) :294-303
[15]   AN EIGENSYSTEM REALIZATION-ALGORITHM FOR MODAL PARAMETER-IDENTIFICATION AND MODEL-REDUCTION [J].
JUANG, JN ;
PAPPA, RS .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1985, 8 (05) :620-627
[16]  
Katayama T., 2005, COMM CONT E
[17]   H-2 AND H-INFINITY APPROXIMATIONS FOR EIGENVALUES VECTOR-FUNCTIONS OF TRANSFER-MATRICES [J].
KOUVARITAKIS, B ;
ROSSITER, JA ;
TRIMBOLI, MS .
INTERNATIONAL JOURNAL OF CONTROL, 1990, 51 (05) :1015-1049
[18]   Noise Issues of Modal Identification using Eigensystem Realization Algorithm [J].
Li, P. ;
Hu, S. L. J. ;
Li, H. J. .
PROCEEDINGS OF THE TWELFTH EAST ASIA-PACIFIC CONFERENCE ON STRUCTURAL ENGINEERING AND CONSTRUCTION (EASEC12), 2011, 14 :1681-1689
[19]   Identification of Flight Vehicle Models Using Fuzzified Eigensystem Realization Algorithm [J].
Lin, Chun-Liang ;
Huang, Ching-Huei ;
Lee, Chia-Sung ;
Chao, Maw-Jyi .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2011, 58 (11) :5206-5219
[20]   Identification and Monitoring of Modal Parameters in Aircraft Structures Using the Natural Excitation Technique (NExT) Combined with the Eigensystem Realization Algorithm (ERA) [J].
Moncayo, Hever ;
Marulanda, Johannio ;
Thomson, Peter .
JOURNAL OF AEROSPACE ENGINEERING, 2010, 23 (02) :99-104