The X(0)(5) spaces and unique continuation for solutions to the semilinear wave equation

被引:37
作者
Tataru, D
机构
[1] Department of Mathematics, Northwestern University
关键词
D O I
10.1080/03605309608821210
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is twofold. First, we initiate a detailed study of the so-called X(theta)(s) spaces attached to a partial differential operator. This include localization, duality, microlocal representation, subelliptic estimates, solvability and L(p)(L(q)) estimates. Secondly, we obtain some theorems on the unique continuation of solutions to semilinear second order hyperbolic equations across strongly pseudo-convex surfaces. These results are proved using some new L(p) --> L(q) Carleman estimates, derived using the X(theta)(s) spaces. Our theorems cover the subcritical case; in the critical case, the problem remains open. Similar results hold for higher order partial differential operators, provided that the characteristic set satisfies a curvature condition.
引用
收藏
页码:841 / 887
页数:47
相关论文
共 22 条
[1]  
ALIHNAC MS, NONUNIQUENESS RESULT
[2]  
ALIHNAC S, 1983, UNICITE PROBLEME CAU, V117, P77
[3]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P107
[4]   POSITIVITY OF PSEUDODIFFERENTIAL OPERATORS [J].
FEFFERMAN, C ;
PHONG, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1978, 75 (10) :4673-4674
[5]  
GILLAKIS M, 1994, NONL PDE C OB GERM J
[6]   GENERALIZED STRICHARTZ INEQUALITIES FOR THE WAVE-EQUATION [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 133 (01) :50-68
[7]  
Hormander L., 1984, ANAL LINEAR PARTIAL
[9]  
Kapitanski L., 1990, LENINGRAD MATH J, V1, P693
[10]  
KENIG C, 1993, DUKE MATH J, V71