Incremental clustering of mobile objects

被引:10
作者
Elnekave, Sigal [1 ]
Last, Mark
Maitnon, Oded
机构
[1] Ben Gurion Univ Negev, IL-84105 Beer Sheva, Israel
来源
2007 IEEE 23RD INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOP, VOLS 1-2 | 2007年
关键词
D O I
10.1109/ICDEW.2007.4401044
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Moving objects are becoming increasingly attractive to the data mining community due to continuous advances in technologies like GPS, mobile computers, and wireless communication devices. Mining spatio-temporal data can benefit many different functions: marketing team managers for identifying the right customers at the right time, cellular companies for optimizing the resources allocation, web site administrators for data allocation matters, animal migration researchers for understanding migration patterns, and meteorology experts for weather forecasting. In this research we use a compact representation of a mobile trajectory and define a new similarity measure between trajectories. We also propose an incremental clustering algorithm for finding evolving groups of similar mobile objects in spatio-temporal data. The algorithm is evaluated empirically by the quality of object clusters (using Dunn and Rand indexes), memory space efficiency, execution times, and scalability (run time VS. number Of objects).
引用
收藏
页码:585 / +
页数:2
相关论文
共 13 条
[1]  
ANAGNOSTOPOULOS A, 2006, KDD 06
[2]  
DAURIA M, 2006, IN PRESS MINING SPAT
[3]  
GIANNOTTI F, 2005, GIS 05, P12
[4]  
GOB JY, 2004, LECT NOTES COMPUTER, V3358, P54
[5]  
Hwang SY, 2005, LECT NOTES ARTIF INT, V3518, P713
[6]   Data clustering: A review [J].
Jain, AK ;
Murty, MN ;
Flynn, PJ .
ACM COMPUTING SURVEYS, 1999, 31 (03) :264-323
[7]  
Li Yifan., 2004, PROC ACM SIGKDD INT, P617
[8]  
Ma SA, 2004, LECT NOTES COMPUT SC, V2973, P824
[9]  
NEHME R, 2006, 10 INT C EXT DAT TEC
[10]  
Schenker A, 2005, SER MACH PERCEPT ART, V62, P1, DOI 10.1142/9789812569455