Identification of distinct clinical phenotypes in mechanically ventilated patients with acute brain dysfunction using cluster analysis

被引:6
|
作者
Souza-Dantas, Vicente Ces [1 ]
Dal-Pizzol, Felipe [2 ,3 ,4 ]
Tomasi, Cristiane D. [2 ,3 ,4 ,5 ,6 ]
Spector, Nelson [1 ]
Soares, Marcio [7 ,8 ]
Bozza, Fernando A. [7 ,9 ]
Povoa, Pedro [10 ,11 ]
Salluh, Jorge I. F. [7 ,8 ]
机构
[1] Univ Fed Rio de Janeiro, Sch Med, Rua Prof Paulo Rocco 255,Cidade Univ, Rio De Janeiro, Brazil
[2] Univ Extremo Sul Catarinense, Lab Fisiopatol Expt, Programa Posgrad Ciencias Saude, Ave Univ, Criciuma, SC, Brazil
[3] Sao Jose Hosp, Intens Care Unit, Criciuma, SC, Brazil
[4] Sao Jose Hosp, Res Ctr, Rua Coronel Pedro Benedet, Criciuma, SC, Brazil
[5] Nucleo Estudos & Pesquisas Integralidade & Saude, Criciuma, SC, Brazil
[6] Univ Extremo Sul Catarinense, Programa Posgrad Saude Colet, Ave Univ 1105, Criciuma, SC, Brazil
[7] Dor Inst Res & Educ, Rua Diniz Cordeiro 30, Botafogo, Brazil
[8] Inst Nacl Canc, Postgrad Program, Praca Cruz Vermelha 23, Rio De Janeiro, Brazil
[9] Oswaldo Cruz Fdn FIOCRUZ, Natl Inst Infect Dis Evandro Chagas, Rio De Janeiro, Brazil
[10] Sao Francisco Xavier Hosp, Ctr Hosp Lisboa Ocident, Polyvalent Intens Care Unit, Estr Forte Alto Duque, Lisbon, Portugal
[11] Univ Nova Lisboa, NOVA Med Sch, CEDOC, Campo Martires Patria 130, Lisbon, Portugal
关键词
acute brain dysfunction; cluster analysis; C-reactive protein; critically ill patients; C-REACTIVE PROTEIN; INTENSIVE-CARE-UNIT; POSTOPERATIVE DELIRIUM; PORTUGUESE VERSIONS; SEDATION; RELIABILITY; VALIDITY; ICU; PREDICTION; MORTALITY;
D O I
10.1097/MD.0000000000020041
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Acute brain dysfunction (ABD) is a frequent and severe syndrome occurring in critically ill patients and early identification of high-risk patients is paramount. In the present analysis, we propose a clinically applicable model for early phenotype identification of ABD at the bedside in mechanically ventilated patients, improving the recognition of patients with prolonged ABD. Prospective cohort with 629 mechanically ventilated patients in two medical-surgical intensive care units at academic centers. We applied cluster analysis to identify phenotypes using clinical and biological data. We then tested the association of phenotypes and its respective clinical outcomes. We performed a validation on a new cohort of patients select on subsequent patients admitted to the participants intensive care units. A model with 3 phenotypes best described the study population. A 4-variable model including medical admission, sepsis diagnosis, simplified acute physiologic score II and basal serum C-reactive protein (CRP) accurately classified each phenotype (area under curve 0.82; 95% CI, 0.79-0.86). Phenotype A had the shorter duration of ABD (median, 1 day), while phenotypes B and C had progressively longer duration of ABD (median, 3 and 6 days, respectively;P < .0001). There was an association between the duration of ABD and the baseline CRP levels and simplified acute physiology score II score (sensitivity and specificity of 80%). To increase the sensitivity of the model, we added CRP kinetics. By day 1, a CRP < 1.0 times the initial level was associated with a shorter duration of ABD (specificity 0.98). A model based on widely available clinical variables could provide phenotypes associated with the duration of ABD. Phenotypes with longer duration of ABD (phenotypes B and C) are characterized by more severe inflammation and by significantly worse clinical outcomes.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Identification of Distinct Clinical Phenotypes of Heterogeneous Mechanically Ventilated ICU Patients Using Cluster Analysis
    Chen, Xuanhui
    Li, Jiaxin
    Liu, Guangjian
    Chen, Xiujuan
    Huang, Shuai
    Li, Huixian
    Liu, Siyi
    Li, Dantong
    Yang, Huan
    Zheng, Haiqing
    Hu, Lianting
    Kong, Lingcong
    Liu, Huazhang
    Bellou, Abdelouahab
    Lei, Liming
    Liang, Huiying
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (04)
  • [2] Inflammatory Subphenotype Is Associated With Acute Brain Dysfunction in Mechanically Ventilated Patients
    Prendergast, N.
    Franz, C.
    Onyemekwu, C. A.
    Potter, K. M.
    Zhang, Y.
    Bain, W.
    Shah, F. A.
    Nouraie, M.
    Mcverry, B. J.
    Kitsios, G.
    Girard, T. D.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2024, 209
  • [3] Impact of acute brain dysfunction on the outcomes of mechanically ventilated cancer patients
    JIF Salluh
    ICT Almeida
    M Soares
    FA Bozza
    CR Shinotsuka
    R Bujokas
    VC Souza-Dantas
    EW Ely
    Critical Care, 17 (Suppl 3):
  • [4] Inflammatory Subphenotype Is Associated with Acute Brain Dysfunction in Mechanically Ventilated Patients
    Prendergast, Niall T.
    Franz, Christopher A.
    Schaefer, Caitlin
    Covell, Nicole Bensen
    Balish, Kelsey
    Onyemekwu, Chukwudi A.
    Potter, Kelly M.
    Zhang, Yingze
    Bain, William G.
    Shah, Faraaz A.
    Nouraie, S. Mehdi
    McVerry, Bryan J.
    Kitsios, Georgios D.
    Girard, Timothy D.
    ANNALS OF THE AMERICAN THORACIC SOCIETY, 2024, 21 (09) : 1329 - 1333
  • [5] The Impact of Acute Brain Dysfunction in the Outcomes of Mechanically Ventilated Cancer Patients
    Almeida, Isabel C. T.
    Soares, Marcio
    Bozza, Fernando A.
    Shinotsuka, Cassia Righy
    Bujokas, Renata
    Souza-Dantas, Vicente Ces
    Ely, E. Wesley
    Salluh, Jorge I. F.
    PLOS ONE, 2014, 9 (01):
  • [6] Identification of clinical phenotypes in patients with and without COPD using cluster analysis
    Divo, Miguel
    Casanova, Ciro
    Marin, Jose M.
    Celli, Bartolome
    de Torres, Juan Pablo
    Polverino, Francesca
    Baz, Rebeca
    Cordoba-Lanus, Elizabeth
    Pinto-Plata, Victor
    EUROPEAN RESPIRATORY JOURNAL, 2016, 48
  • [7] ACUTE BRAIN DYSFUNCTION IS A MAJOR PREDICTOR OF HOSPITAL MORTALITY IN MECHANICALLY VENTILATED CANCER PATIENTS
    Almeida, C.
    Soares, M.
    Shinotsuka, C.
    Bujokas, R.
    Dantas, V. C.
    Salluh, J. I.
    INTENSIVE CARE MEDICINE, 2012, 38 : S49 - S50
  • [8] Identification and validation of distinct biological phenotypes in patients with acute respiratory distress syndrome by cluster analysis
    Bos, L. D.
    Schouten, L. R.
    van Vught, L. A.
    Wiewel, M. A.
    Ong, D. S. Y.
    Cremer, O.
    Artigas, A.
    Martin-Loeches, I.
    Hoogendijk, A. J.
    van der Poll, T.
    Horn, J.
    Juffermans, N.
    Calfee, C. S.
    Schultz, M. J.
    THORAX, 2017, 72 (10) : 876 - 883
  • [9] Identification of Clinical Phenotypes in Sarcoidosis Using a Cluster Analysis
    Lasa, Carmen
    Fernandez-Ramon, Raul
    Javier Gaitan, Jorge
    Martin-Varillas, Jose Luis
    Demetrio, Rosalia
    Ferraz Amaro, Ivan
    Castaneda, Santos
    Blanco, Ricardo
    ARTHRITIS & RHEUMATOLOGY, 2023, 75 : 4999 - 5001
  • [10] Identification of clinical phenotypes using cluster analyses in COPD patients
    Corlateanu, Alexandru
    Scutaru, Eugenia
    Rusu, Doina
    Corlateanu, Olga
    Covantev, Serghei
    Botnaru, Victor
    EUROPEAN RESPIRATORY JOURNAL, 2019, 54