Semi-supervised cross-modal image generation with generative adversarial networks

被引:41
|
作者
Li, Dan [1 ,2 ,3 ]
Du, Changde [1 ,2 ,3 ]
He, Huiguang [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Res Ctr Brain Inspired Intelligence, Inst Automat, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-modality; Semi-supervised learning; Semantic networks; Generative adversarial networks; Multi-label learning; MULTIMODAL FUSION;
D O I
10.1016/j.patcog.2019.107085
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-modal image generation is an important aspect of the multi-modal learning. Existing methods usually use the semantic feature to reduce the modality gap. Although these methods have achieved notable progress, there are still some limitations: (1) they usually use single modality information to learn the semantic feature; (2) they require the training data to be paired. To overcome these problems, we propose a novel semi-supervised cross-modal image generation method, which consists of two semantic networks and one image generation network. Specifically, in the semantic networks, we use image modality to assist non-image modality for semantic feature learning by using a deep mutual learning strategy. In the image generation network, we introduce an additional discriminator to reduce the image reconstruction loss. By leveraging large amounts of unpaired data, our method can be trained in a semi-supervised manner. Extensive experiments demonstrate the effectiveness of the proposed method. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] SCH-GAN: Semi-Supervised Cross-Modal Hashing by Generative Adversarial Network
    Zhang, Jian
    Peng, Yuxin
    Yuan, Mingkuan
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (02) : 489 - 502
  • [2] Semi-supervised cross-modal learning for cross modal retrieval and image annotation
    Fuhao Zou
    Xingqiang Bai
    Chaoyang Luan
    Kai Li
    Yunfei Wang
    Hefei Ling
    World Wide Web, 2019, 22 : 825 - 841
  • [3] Semi-supervised cross-modal learning for cross modal retrieval and image annotation
    Zou, Fuhao
    Bai, Xingqiang
    Luan, Chaoyang
    Li, Kai
    Wang, Yunfei
    Ling, Hefei
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2019, 22 (02): : 825 - 841
  • [4] Semi-supervised generative adversarial networks with spatial coevolution for enhanced image generation and classification
    Toutouh, Jamal
    Nalluru, Subhash
    Hemberg, Erik
    O'Reilly, Una-May
    APPLIED SOFT COMPUTING, 2023, 148
  • [5] Semi-supervised Cross-Modal Hashing with Graph Convolutional Networks
    Duan, Jiasheng
    Luo, Yadan
    Wang, Ziwei
    Huang, Zi
    DATABASES THEORY AND APPLICATIONS, ADC 2020, 2020, 12008 : 93 - 104
  • [6] A semi-supervised cross-modal memory bank for cross-modal retrieval
    Huang, Yingying
    Hu, Bingliang
    Zhang, Yipeng
    Gao, Chi
    Wang, Quan
    NEUROCOMPUTING, 2024, 579
  • [7] A Semi-supervised Encoder Generative Adversarial Networks Model for Image Classification
    Fu, Xiao
    Shen, Yuan-Tong
    Li, Hong-Wei
    Cheng, Xiao-Mei
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (03): : 531 - 539
  • [8] SEMI-SUPERVISED VARIATIONAL GENERATIVE ADVERSARIAL NETWORKS FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Wang, Hao
    Tao, Chao
    Qi, Ji
    Li, HaiFeng
    Tang, YuQi
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 9792 - 9794
  • [9] Semi-supervised image attribute editing using generative adversarial networks
    Dogan, Yahya
    Keles, Hacer Yalim
    NEUROCOMPUTING, 2020, 401 (401) : 338 - 352
  • [10] Generative adversarial network for semi-supervised image captioning
    Liang, Xu
    Li, Chen
    Tian, Lihua
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 249