Multiplicative linear search for a brownian target motion

被引:27
|
作者
Mohamed, Abd El-Moneim Anwar [1 ]
Kassem, Mohamed Abd El-Hady [1 ]
El-Hadidy, Mohamed Abd Allah [1 ]
机构
[1] Tanta Univ, Fac Sci, Dept Math, Tanta, Egypt
关键词
Real line; Search model; Brownian motion; First meeting time; Multiobjective non linear programming problem; OBJECT HIDDEN; PATHS;
D O I
10.1016/j.apm.2011.03.024
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper investigates a search problem for a brownian target motion on one of n-intersected real lines in which any information of the target position is not available to the searchers all the time. We have n-searchers start searching for the target from the origin that is the intersection point of these lines. Each of the searchers moves continuously along his line in both directions of the starting point. The purpose of this paper is to formulate a search model and find the condition under which the expected value of the first meeting time between one of the searchers and the target is finite. Also, we show the existence of the optimal search plan which minimizes the expected value of the first meeting time and find it. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:4127 / 4139
页数:13
相关论文
共 50 条
  • [31] Catastrophes in brownian motion
    Guz, SA
    Mannella, R
    Sviridov, MV
    PHYSICS LETTERS A, 2003, 317 (3-4) : 233 - 241
  • [32] Brownian Motion of Graphene
    Marago, Onofrio M.
    Bonaccorso, Francesco
    Saija, Rosalba
    Privitera, Giulia
    Gucciardi, Pietro G.
    Iati, Maria Antonia
    Calogero, Giuseppe
    Jones, Philip H.
    Borghese, Ferdinando
    Denti, Paolo
    Nicolosi, Valeria
    Ferrari, Andrea C.
    ACS NANO, 2010, 4 (12) : 7515 - 7523
  • [33] Granular Brownian motion
    Sarracino, A.
    Villamaina, D.
    Costantini, G.
    Puglisi, A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [34] Brownian motion of a torus
    Thaokar, Rochish M.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2008, 317 (1-3) : 650 - 657
  • [35] Quantization of Brownian motion
    Rabei, Eqab M.
    Ajlouni, Abdul-Wali
    Ghassib, Humam B.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2006, 45 (09) : 1619 - 1629
  • [36] Coupled Brownian Motion
    Sempi, Carlo
    COMBINING SOFT COMPUTING AND STATISTICAL METHODS IN DATA ANALYSIS, 2010, 77 : 569 - 574
  • [37] Relativistic Brownian motion
    Dunkel, Joern
    Haenggi, Peter
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 471 (01): : 1 - 73
  • [38] Integration questions related to fractional Brownian motion
    Vladas Pipiras
    Murad S. Taqqu
    Probability Theory and Related Fields, 2000, 118 : 251 - 291
  • [39] A note on the Brownian motion
    Kawazu, K
    From Stochastic Calculus to Mathematical Finance: The Shiryaev Festschrift, 2006, : 385 - 392
  • [40] Noncommutative Brownian motion
    Santos, Willien O.
    Almeida, Guilherme M. A.
    Souza, Andre M. C.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2017, 32 (23-24):