Granger Causality Inference in EEG Source Connectivity Analysis: A State-Space Approach

被引:13
作者
Manomaisaowapak, Parinthorn [1 ]
Nartkulpat, Anawat [1 ]
Songsiri, Jitkomut [1 ]
机构
[1] Chulalongkorn Univ, Fac Engn, Dept Elect Engn, Bangkok 10330, Thailand
关键词
Electroencephalography; Brain modeling; Reactive power; Mathematical model; State-space methods; Image reconstruction; Computational modeling; Brain connectivity; electroencephalogram (EEG); Granger causality (GC); group sparse structure; state-space models; TOOLBOX;
D O I
10.1109/TNNLS.2021.3096642
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article addresses the problem of estimating brain effective connectivity from electroencephalogram (EEG) signals using a Granger causality (GC) characterized on state-space models, extended from the conventional vector autoregressive (VAR) process. The scheme involves two main steps: model estimation and model inference to estimate brain connectivity. The model estimation performs a subspace identification and active source selection based on group-norm regularized least-squares. The model inference relies on the concept of state-space GC that requires solving a Riccati equation for the covariance of estimation error. We verify the performance on simulated datasets that represent realistic human brain activities under several conditions, including percentages and location of active sources, and the number of EEG electrodes. Our model's accuracy in estimating connectivity is compared with a two-stage approach using source reconstructions and a VAR-based Granger analysis. Our method achieved better performances than the two-stage approach under the assumptions that the true source dynamics are sparse and generated from state-space models. When the method was applied to a real EEG SSVEP dataset, the temporal lobe was found to be a mediating connection between the temporal and occipital areas, which agreed with findings in previous studies.
引用
收藏
页码:3146 / 3156
页数:11
相关论文
共 40 条
[1]   Quantifying the Effect of Demixing Approaches on Directed Connectivity Estimated Between Reconstructed EEG Sources [J].
Anzolin, Alessandra ;
Presti, Paolo ;
Van de Steen, Frederik ;
Astolfi, Laura ;
Haufe, Stefan ;
Marinazzo, Daniele .
BRAIN TOPOGRAPHY, 2019, 32 (04) :655-674
[2]   Granger causality for state-space models [J].
Barnett, Lionel ;
Seth, Anil K. .
PHYSICAL REVIEW E, 2015, 91 (04)
[3]   The MVGC multivariate Granger causality toolbox: A new approach to Granger-causal inference [J].
Barnett, Lionel ;
Seth, Anil K. .
JOURNAL OF NEUROSCIENCE METHODS, 2014, 223 :50-68
[4]   Behaviour of Granger causality under filtering: Theoretical invariance and practical application [J].
Barnett, Lionel ;
Seth, Anil K. .
JOURNAL OF NEUROSCIENCE METHODS, 2011, 201 (02) :404-419
[5]   SISSY: An efficient and automatic algorithm for the analysis of EEG sources based on structured sparsity [J].
Becker, H. ;
Albera, L. ;
Comon, P. ;
Nunes, J. -C. ;
Gribonval, R. ;
Fleureau, J. ;
Guillotel, P. ;
Merlet, I. .
NEUROIMAGE, 2017, 157 :157-172
[6]   SCoT: a Python']Python toolbox for EEG source connectivity [J].
Billinger, Martin ;
Brunner, Clemens ;
Mueller-Putz, Gernot R. .
FRONTIERS IN NEUROINFORMATICS, 2014, 8
[7]   Estimation of Cortical Connectivity From EEG Using State-Space Models [J].
Cheung, Bing Leung Patrick ;
Riedner, Brady Alexander ;
Tononi, Giulio ;
Van Veen, Barry D. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (09) :2122-2134
[8]   A Generalized Multivariate Autoregressive (GmAR)-Based Approach for EEG Source Connectivity Analysis [J].
Chiang, Joyce ;
Wang, Z. Jane ;
McKeown, Martin J. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (01) :453-465
[9]   EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis [J].
Delorme, A ;
Makeig, S .
JOURNAL OF NEUROSCIENCE METHODS, 2004, 134 (01) :9-21
[10]   EEGLAB, SIFT, NFT, BCILAB, and ERICA: New Tools for Advanced EEG Processing [J].
Delorme, Arnaud ;
Mullen, Tim ;
Kothe, Christian ;
Acar, Zeynep Akalin ;
Bigdely-Shamlo, Nima ;
Vankov, Andrey ;
Makeig, Scott .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2011, 2011