CATS: Cas9-assisted tag switching. A high-throughput method for exchanging genomic peptide tags in yeast

被引:4
作者
Berry, Lisa K. [1 ]
Thomas, Grace Heredge [1 ]
Thorpe, Peter H. [1 ]
机构
[1] Queen Mary Univ London, Sch Biol & Chem Sci, Mile End Rd, London E1 4NS, England
基金
英国医学研究理事会; 英国惠康基金;
关键词
CRISPR-Cas9; Yeast; Array; GFP collection; SPA; Tag switching; DNA-DAMAGE; PROTEIN LOCALIZATION; GLOBAL ANALYSIS; DEGRON SYSTEM; SACCHAROMYCES; DELETION; GENES; TRANSFORMATION; CRISPR-CAS9; ADAPTATION;
D O I
10.1186/s12864-020-6634-9
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background The creation of arrays of yeast strains each encoding a different protein with constant tags is a powerful method for understanding how genes and their proteins control cell function. As genetic tools become more sophisticated there is a need to create custom libraries encoding proteins fused with specialised tags to query gene function. These include protein tags that enable a multitude of added functionality, such as conditional degradation, fluorescent labelling, relocalization or activation and also DNA and RNA tags that enable barcoding of genes or their mRNA products. Tools for making new libraries or modifying existing ones are becoming available, but are often limited by the number of strains they can be realistically applied to or by the need for a particular starting library. Results We present a new recombination-based method, CATS - Cas9-Assisted Tag Switching, that switches tags in any existing library of yeast strains. This method employs the reprogrammable RNA guided nuclease, Cas9, to both introduce endogenous double strand breaks into the genome as well as liberating a linear DNA template molecule from a plasmid. It exploits the relatively high efficiency of homologous recombination in budding yeast compared with non-homologous end joining. Conclusions The method takes less than 2 weeks, is cost effective and can simultaneously introduce multiple genetic changes, thus providing a rapid, genome-wide approach to genetic modification.
引用
收藏
页数:21
相关论文
共 56 条
[1]   Yeast genetic interaction screens in the age of CRISPR/Cas [J].
Adames, Neil R. ;
Gallegos, Jenna E. ;
Peccoud, Jean .
CURRENT GENETICS, 2019, 65 (02) :307-327
[2]   Homology-Integrated CRISPR-Cas (HI-CRISPR) System for One-Step Multigene Disruption in Saccharomyces cerevisiae [J].
Bao, Zehua ;
Xiao, Han ;
Lang, Jing ;
Zhang, Lu ;
Xiong, Xiong ;
Sun, Ning ;
Si, Tong ;
Zhao, Huimin .
ACS SYNTHETIC BIOLOGY, 2015, 4 (05) :585-594
[3]   A reversible gene trap collection empowers haploid genetics in human cells [J].
Buerckstuemmer, Tilmann ;
Banning, Carina ;
Hainzl, Philipp ;
Schobesberger, Richard ;
Kerzendorfer, Claudia ;
Pauler, Florian M. ;
Chen, Doris ;
Them, Nicole ;
Schischlik, Fiorella ;
Rebsamen, Manuele ;
Smida, Michal ;
de la Cruz, Ferran Fece ;
Lapao, Ana ;
Liszt, Melissa ;
Eizinger, Benjamin ;
Guenzl, Philipp M. ;
Blomen, Vincent A. ;
Konopka, Tomasz ;
Gapp, Bianca ;
Parapatics, Katja ;
Maier, Barbara ;
Stoeckl, Johannes ;
Fischl, Wolfgang ;
Salic, Sejla ;
Casari, M. Rita Taba ;
Knapp, Sylvia ;
Bennett, Keiryn L. ;
Bock, Christoph ;
Colinge, Jacques ;
Kralovics, Robert ;
Ammerer, Gustav ;
Casari, Georg ;
Brummelkamp, Thijn R. ;
Superti-Furga, Giulio ;
Nijman, Sebastian M. B. .
NATURE METHODS, 2013, 10 (10) :965-+
[4]   Self-establishing communities enable cooperative metabolite exchange in a eukaryote [J].
Campbell, Kate ;
Vowinckel, Jakob ;
Muelleder, Michael ;
Malmsheimer, Silke ;
Lawrence, Nicolo ;
Calvani, Enrica ;
Miller-Fleming, Leonor ;
Alam, Mohammad T. ;
Christen, Stefan ;
Keller, Markus A. ;
Ralser, Markus .
ELIFE, 2015, 4
[5]   A novel multi-purpose cassette for repeated integrative epitope tagging of genes in Saccharomyces cerevisiae [J].
De Antoni, A ;
Gallwitz, D .
GENE, 2000, 246 (1-2) :179-185
[6]  
de Chaumont F, 2012, NAT METHODS, V9, P690, DOI [10.1038/nmeth.2075, 10.1038/NMETH.2075]
[7]   Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems [J].
DiCarlo, James E. ;
Norville, Julie E. ;
Mali, Prashant ;
Rios, Xavier ;
Aach, John ;
Church, George M. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (07) :4336-4343
[8]   The new frontier of genome engineering with CRISPR-Cas9 [J].
Doudna, Jennifer A. ;
Charpentier, Emmanuelle .
SCIENCE, 2014, 346 (6213) :1077-+
[9]   Phenotypes on demand via switchable target protein degradation in multicellular organisms [J].
Faden, Frederik ;
Ramezani, Thomas ;
Mielke, Stefan ;
Almudi, Isabel ;
Nairz, Knud ;
Froehlich, Marceli S. ;
Hoeckendorff, Joerg ;
Brandt, Wolfgang ;
Hoehenwarter, Wolfgang ;
Dohmen, R. Juergen ;
Schnittger, Arp ;
Dissmeyer, Nico .
Nature Communications, 2016, 7
[10]   mCAL: A New Approach for Versatile Multiplex Action of Cas9 Using One sgRNA and Loci Flanked by a Programmed Target Sequence [J].
Finnigan, Gregory C. ;
Thorner, Jeremy .
G3-GENES GENOMES GENETICS, 2016, 6 (07) :2147-2156