Class numbers of real quadratic fields

被引:1
作者
Byeon, Dongho [1 ]
Kim, Jigu [2 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul, South Korea
[2] Ewha Womans Univ, Inst Math Sci, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Class number; Real quadratic fields; L-function; Elliptic curve; SPECIAL VALUES;
D O I
10.1016/j.jnt.2020.11.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let d > 0 be a fundamental discriminant of a real quadratic field. Let h(d) be the class number and epsilon(d) the fundamental unit of the real quadratic field Q(root d). In this paper, we prove that if there is an elliptic curve E over Q whose Hasse-Weil L-function L-E/Q(S) has a zero of order g at s = 1, then there is an effectively computable constant k > 0 satisfying h(d) log epsilon(d) > 1/k (log d)(g-3) Pi(p vertical bar d, p not equal d) (1-left perpendicular2 root p right perpendicular/p+1). (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 47
页数:47
相关论文
共 19 条
[1]   An explicit lower bound for special values of Dirichlet L-functions II [J].
Byeon, Dongho ;
Kim, Jigu .
JOURNAL OF NUMBER THEORY, 2019, 205 :194-209
[2]   An explicit lower bound for special values of Dirichlet L-functions [J].
Byeon, Dongho ;
Kim, Jigu .
JOURNAL OF NUMBER THEORY, 2018, 189 :272-303
[3]  
COATES J, 1987, J REINE ANGEW MATH, V375, P104
[4]  
Cremona John, Elliptic curve data
[5]  
Degert Gunter., 1958, Abh. Math. Sem. Univ. Hamburg, V22, P92
[6]  
Delaunay C., 2003, J THEOR NOMBR BORDX, V15, P673
[7]  
Diamond F., 2005, A first course in modular forms
[8]  
Goldfeld DF., 1976, Annali della Scuola Normale Superiore di Pisa, V3, P623
[9]  
Hardy G.H., 1915, The general theory of Dirichlet series
[10]  
Hecke E, 1959, VERH NATURFORSCH GES, V28, P198