Highly Dispersive Optical Solitons with Complex Ginzburg-Landau Equation Having Six Nonlinear Forms

被引:23
作者
Zayed, Elsayed M. E. [1 ]
Gepreel, Khaled A. [1 ,2 ]
El-Horbaty, Mahmoud [1 ]
Biswas, Anjan [3 ,4 ,5 ,6 ,7 ]
Yildirim, Yakup [8 ]
Alshehri, Hashim M. [4 ]
机构
[1] Zagazig Univ, Dept Math, Fac Sci, Zagazig 44519, Egypt
[2] Taif Univ, Dept Math, Fac Sci, At Taif 21944, Saudi Arabia
[3] Natl Res Nucl Univ, Dept Appl Math, 31 Kashirskoe Hwy, Moscow 115409, Russia
[4] King Abdulaziz Univ, Dept Math, Math Modeling & Appl Computat MMAC Res Grp, Jeddah 21589, Saudi Arabia
[5] Dunarea de Jos Univ Galati, Cross Border Fac, Dept Appl Sci, 111 Domneasca St, Galati 800201, Romania
[6] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Ga Rankuwa, South Africa
[7] Alabama A&M Univ, Dept Phys Chem & Math, Huntsville, AL 35762 USA
[8] Near East Univ, Fac Arts & Sci, Dept Math, CY-99138 Nicosia, Cyprus
关键词
solitons; refractive index; Kudryashov; WAVES;
D O I
10.3390/math9243270
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper retrieves highly dispersive optical solitons to complex Ginzburg-Landau equation having six forms of nonlinear refractive index structures for the very first time. The enhanced version of the Kudryashov approach is the adopted integration tool. Thus, bright and singular soliton solutions emerge from the scheme that are exhibited with their respective parameter constraints.
引用
收藏
页数:19
相关论文
共 31 条
  • [1] Application of the first integral method for solving (1+1) dimensional cubic-quintic complex Ginzburg-Landau equation
    Akram, Ghazala
    Mahak, Nadia
    [J]. OPTIK, 2018, 164 : 210 - 217
  • [2] On a nonlocal problem involving a nonstandard nonhomogeneous differential operator
    Avci, Mustafa
    Suer, Berat
    [J]. JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2019, 5 (01) : 47 - 67
  • [3] Bethuel F, 2017, MOD BIRKHAUSER CLASS, DOI 10.1007/978-3-319-66673-0
  • [4] Cubic-Quartic Optical Soliton Pertubation with Complex Ginzburg-Landau Equation
    Biswas, Anjan
    Yildirim, Yakup
    Ekici, Mehmet
    Guggilla, Padmaja
    Khan, Salam
    Gonzalez-Gaxiola, O.
    Alzahrani, Abdullah Khamis
    Belic, Milivoj R.
    [J]. JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2021, 24 (06): : 937 - 1004
  • [5] Conservation laws for pure-cubic optical solitons with complex Ginzburg-Landau equation having several refractive index structures
    Biswas, Anjan
    Kara, Abdul H.
    Sun, Yunzhou
    Zhou, Qin
    Yildirim, Yakup
    Alshehri, Hashim M.
    Belic, Milivoj R.
    [J]. RESULTS IN PHYSICS, 2021, 31
  • [6] Minimizing properties of arbitrary solutions to the Ginzburg-Landau equation
    Comte, M
    Mironescu, P
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 : 1157 - 1169
  • [7] Ginzburg V. L., 1965, On Superconductivity and Superfluidity, V20, P546, DOI [DOI 10.1007/978-3-540-68008-6_4, 10.1007/978-3-540-68008-6_4]
  • [8] New Exact Solutions of the Fractional Complex Ginzburg-Landau Equation
    Huang, Chun
    Li, Zhao
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [9] Solitary waves described by a high-order system in optical fiber Bragg gratings with arbitrary refractive index
    Kan, Kristina, V
    Kudryashov, Nikolay A.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (02) : 1072 - 1079
  • [10] Model of propagation pulses in an optical fiber with a new law of refractive indices
    Kudryashov N.A.
    [J]. Optik, 2021, 248